Studying the topology of a network is critical to inferring underlying dynamics such as tolerance to failure, group behavior and spreading patterns. k-core decomposition is a well-established metric which partitions a graph into layers from external to more central vertices. In this paper we aim to explore whether k-core decomposition of large networks can be computed using a consumer-grade PC. We feature implementations of the "vertex-centric" distributed protocol introduced by Montresor, De Pellegrini and Miorandi on GraphChi and Webgraph. Also, we present an accurate implementation of the Batagelj and Zaversnik algorithm for k-core decomposition in Webgraph. With our implementations, we show that we can efficiently handle networks of billions of edges using a single consumer-level machine within reasonable time and can produce excellent approximations in only a fraction of the execution time. To the best of our knowledge, our biggest graphs are considerably larger than the graphs considered in the literature. Next, we present an optimized implementation of an external-memory algorithm (EMcore) by Cheng, Ke, Chu, andÖzsu. We show that this algorithm also performs well for large datasets, however, it cannot predict whether a given memory budget is sufficient for a new dataset. We present a thorough analysis of all algorithms concluding that it is viable to compute k-core decomposition for large networks in a consumer-grade PC.
We propose a new method to build persistent suffix trees for indexing the genomic data. Our algorithm DiGeST (Disk-Based Genomic Suffix Tree) improves significantly over previous work in reducing the random access to the input string and performing only two passes over disk data. DiGeST is based on the two-phase multi-way merge sort paradigm using a concise binary representation of the DNA alphabet. Furthermore, our method scales to larger genomic data than managed before.
In this paper we introduce a new type of pattern -a flipping correlation pattern. The flipping patterns are obtained from contrasting the correlations between items at different levels of abstraction. They represent surprising correlations, both positive and negative, which are specific for a given abstraction level, and which "flip" from positive to negative and vice versa when items are generalized to a higher level of abstraction. We design an efficient algorithm for finding flipping correlations, the Flipper algorithm, which outperforms naïve pattern mining methods by several orders of magnitude. We apply Flipper to real-life datasets and show that the discovered patterns are non-redundant, surprising and actionable. Flipper finds strong contrasting correlations in itemsets with low-to-medium support, while existing techniques cannot handle the pattern discovery in this frequency range.
Abstract. Mining strong correlations from transactional databases often leads to more meaningful results than mining association rules. In such mining, null (transaction)-invariance is an important property of the correlation measures. Unfortunately, some useful null-invariant measures such as Kulczynski and Cosine, which can discover correlations even for the very unbalanced cases, lack the (anti)-monotonicity property. Thus, they could only be applied to frequent itemsets as the post-evaluation step. For large datasets and for low supports, this approach is computationally prohibitive. This paper presents new properties for all known null-invariant measures. Based on these properties, we develop efficient pruning techniques and design the Apriori-like algorithm NICOMINER for mining strongly correlated patterns directly. We develop both the threshold-bounded and the top-k variations of the algorithm, where top-k is used when the optimal correlation threshold is not known in advance and to give user control over the output size. We test NICOMINER on real-life datasets from different application domains, using Cosine as an example of the null-invariant correlation measure. We show that NICOMINER outperforms support-based approach more than an order of magnitude, and that it is very useful for discovering top correlations in itemsets with low support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.