We have examined whether blood volume changes induced by neural activation are controlled precisely enough for us to visualize the submillimeter-scale functional structure in anesthetized and awake cat visual cortex. To activate the submillimeter-scale functional structures such as iso-orientation domains in the cortex, visual stimuli (gratings) were presented to the cats. Two methods were used to examine the spatial precision of blood volume changes including changes in total hemoglobin content and changes in plasma volume: (i) intrinsic signal imaging at the wavelength of hemoglobin's isosbestic point (569 nm) and (ii) imaging of absorption changes of an intravenously injected dye. Both measurements showed that the visual stimuli elicited stimulus-nonspecific and stimulus-specific blood volume changes in the cortex. The former was not spatially localized, while the latter was confined to iso-orientation domains. From the measurement of spatial separation of the iso-orientation domains, we estimated the spatial resolution of stimulus-specific blood volume changes to be as high as 0.6 mm. The changes in stimulus-nonspecific and -specific blood volume were not linearly correlated. These results suggest the existence of fine blood volume control mechanisms in the capillary bed in addition to global control mechanisms in arteries.
Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields.
Surface neural activity has been widely visualized using optical intrinsic signal imaging (OISI) from various cortical sensory areas. OISI of the cortical surface with a CCD camera gives integrated information across a depth of a few hundred micrometers. We visualize depth-resolved activation patterns of cat primary visual cortex by functional optical coherence tomography (fOCT). A comparison of the depth-integrated results of fOCT maps with the optical intrinsic signal profiles shows fairly good agreement. Our results reveal layer-specific activation patterns and indicate that the activation was not homogeneous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.