To enhance patient compliance toward treatment in diseases like diabetes, usually a combination of drugs is prescribed. Therefore, an anti-diabetic fixed-dose combination of 2.5 mg of linagliptin 500 mg of metformin was taken for simultaneous estimation of both the drugs by reverse phase-high performance liquid chromatography (RP-HPLC) method. The present study aimed to develop a simple and sensitive RP-HPLC method for the simultaneous determination of linagliptin and metformin in pharmaceutical dosage forms. The chromatographic separation was designed and evaluated by using linagliptin and metformin working standard and sample solutions in the linearity range. Chromatographic separation was performed on a C18 column using a mobile phase of 70:30 (v/v) mixture of methanol and 0.05 M potassium dihydrogen orthophosphate (pH adjusted to 4.6 with orthophosphoric acid) delivered at a flow rate of 0.6 mL/min and UV detection at 267 nm. Linagliptin and metformin shown linearity in the range of 2-12 μg/mL and 400–2400 μg/mL respectively with correlation co-efficient of 0.9996 and 0.9989. The resultant findings analyzed for standard deviation (SD) and relative standard deviation to validate the developed method. The retention time of linagliptin and metformin was found to be 6.3 and 4.6 min and separation was complete in <10 min. The method was validated for linearity, accuracy and precision were found to be acceptable over the linearity range of the linagliptin and metformin. The method was found suitable for the routine quantitative analysis of linagliptin and metformin in pharmaceutical dosage forms.
Mesua ferrea flowers have been used in the Indian traditional medicine for treating various diseases. In present study, the Mesua ferrea flowers methanolic extract (MFME, 200 mg/kg bw) was studied for anti diabetic activity and underlying mechanisms for its activity. In Streptozotocin induced diabetes rats model, MFME treatment enhanced plasma insulin levels by 69.53% (P<0.0001) than the diabetic control rats. In diabetic rats, MFME treatment significantly restored body weight and blood glucose levels to normal. In Insulin release studies on MIN6 beta cells, insulin release was potentiated in a dose dependent manner of extract and glucose. The insulin stimulatory effect of MFME was stimulated by 3-isobutyl-1-methyl xanthine, Glibenclamide and elevated extracellular calcium. In distinction, the stimulatory effect was inhibited with diazoxide, nifedipine, EGTA and K + depolarized media. These results indicate MFME anti diabetic activity might be a result of insulin secretagogue effect through beta cell physiological pathways.
Aim:Abrus precatorius leaves methanolic extract (APME) was evaluated for in vivo antihyperglycemic activity and in vitro insulinotropic effect.Materials and Methods:In vivo antihyperglycemic and insulin secretagogue activities were assessed in streptozotocin-induced diabetic rats by oral administration of APME (200 mg/kg body weight [bw]) for 28 days. In vitro insulin secretion mechanisms were studied using mouse insulinoma beta cells (MIN6-β). In vivo body weight and blood glucose and in vivo and in vitro insulin levels were estimated.Results:In diabetic rats, APME treatment significantly restored body weight (26.39%), blood glucose (32.39%), and insulin levels (73.95%) in comparison to diabetic control rats. In MIN6-β cells, APME potentiated insulin secretion in a dependent manner of glucose (3–16.7 mM) and extract (5–500 μg/mL) concentration. Insulin secretagogue effect was demonstrated in the presence of 3-isobutyl-1-methyl xanthine, glibenclamide, elevated extracellular calcium, and K+ depolarized media. Insulin release was reduced in the presence of nifedipine, ethylene glycol tetra acetic acid (calcium blocking agents), and diazoxide (potassium channel opener).Conclusion:The study suggests that APME antihyperglycemic activity might involve the insulin secretagogue effect by pancreatic beta cells physiological pathways via K+-ATP channel dependent and independently, along with an effect on Ca2+ channels.SUMMARY Abrus precatorius leaves methanolic extract (APME) showed a significant anti hyperglycemic and insulin secretagogue activities in streptozotocin induced diabetic rats. Also demonstrated a potent In vitro insulin secretagogue effect in mouse insulinoma beta cells (MIN6-β)APME treatment significantly restored body weight (26.39%), reduced blood glucose (32.39%) and enhanced circulatory insulin levels (73.95%) in diabetic ratsAPME demonstrated glucose and extract dose dependent insulin secretionInsulin secretagogue effect was demonstrated in the presence of 3-isobutyl-1-methyl xanthine, glibenclamide, elevated extracellular calcium and K+ depolarized media. Insulin release was reduced in the presence of nifedipine and ethylene glycol tetra acetic acid (Calcium blocking agents), diazoxide (potassium channel opener)The insulinotropic effect of APME involves a physiologic effect on K+-ATP channel and Ca2+ channels Abbreviations Used: ANOVA: Analysis of variance, CMC: Carboxy methyl cellulose, cAMP: Cyclic adenosine monophosphate, CaCl: Calcium chloride, AP: Abrus precatorius, APME: Abrus precatorius methanolic extract, DMEM: Dulbecco's modified Eagle's medium, DMSO: Dimethyl sulphoxide, EGTA: Ethylene glycol tetra acetic acid, FCS: Fetal calf serum, IBMX: 3-Isobutyl-1-methylxanthine, KCl: Potassium chloride, KRB: Kreb's Ringer buffer, MIN6: Mouse insulinoma cell line, MTT: 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide, STZ: Streptozotocin.
Objective: The objective of the present study was to prepare and evaluate a novel oral formulation of nanoparticles for the systemic delivery of lowmolecular-weight heparin (LMWH).Methods: Nanoparticles were prepared by polyelectrolyte complexation method using polymers, i.e., sodium alginate and chitosan (CH). Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), entrapment efficiency, In vitro release and scanning electron microscopic studies were carried out for nanoparticles. Ex vivo permeation studies were performed with optimized formulation using small intestine of rat and in vivo studies were conducted on rat model. Results:Entrapment efficiency of LMWH in nanoparticles was found to be 88%. In vitro release studies demonstrated that the release of LMWH was negligible in the stomach and high in the small intestine. FTIR has indicated that there is no interaction between the ingredients in nanoparticle. DSC and XRD studies confirmed that the amino groups of CH interacted with the carboxylic groups of alginate. In vitro % drug release of 95% was shown by formulation AC5. Ex vivo permeation studies have elucidated that ~73% of LMWH was transported across the epithelium. Nanoparticles have shown enhanced oral bioavailability of LMWH as revealed by 4.5-fold increase in area under the curve of plasma drug concentration-time curve. Conclusion:The results suggest that the nanoparticles prepared can result in targeted delivery of LMWH into systemic circulation through intestinal and colon routes. Novel nanoparticles thus prepared in this study can be considered as a promising delivery system.
Since ancient times, traditional medicines have been in the usage for the treatment of Diabetes mellitus. An edible fruit from traditional medicinal plant Capparis zeylanica (CZ) was studied for its anti diabetic, insulin secretagogue activities and mechanisms involved in it. In Streptozotocin induced diabetes rats, oral administration of Capparis zeylanica methanolic extract (CZME) (200 mg/kg body weight) for 28 days showed a significant reduction in blood glucose levels by 35.53% and enhanced circulating insulin levels by 81.82% than the diabetic control rats. The insulin secretagogue activity mechanisms of the extract were evaluated by using mouse insulinoma beta cell line (MIN6-β). The extract stimulated insulin release in dependent manner of glucose concentration (3-16.7 mM) and extract dose (5-500 μg/mL). The insulin releasing effect of the extract was significantly enhanced by 3-isobutyl-1-methyl xanthine, glibenclamide, elevated extracellular calcium and K + depolarized media. This insulin release was significantly reduced in calcium blocking conditions (by nifedipine and EGTA), in the presence of potassium channel opener (diazoxide). Hence, anti diabetic activity of CZME might be a result of its stimulatory effect on insulin release from pancreatic beta cells via K ATP channel dependent and independent ways. These results indicate that CZ fruits have the potential to use in diabetes therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.