Feeding is vital for animal survival and is tightly regulated by the endocrine and nervous systems. To study the mechanisms of humoral regulation of feeding behavior, we investigated serotonin (5-HT) and octopamine (OA) signaling inCaenorhabditis elegans, which uses pharyngeal pumping to ingest bacteria into the gut. We reveal that a cross-modulation mechanism between 5-HT and OA, which convey feeding and fasting signals, respectively, mainly functions in regulating the pumping and secretion of both neuromodulators via ADF/RIC/SIA feedforward neurocircuit (consisting of ADF, RIC, and SIA neurons) and ADF/RIC/AWB/ADF feedback neurocircuit (consisting of ADF, RIC, AWB, and ADF neurons) under conditions of food supply and food deprivation, respectively. Food supply stimulates food-sensing ADFs to release more 5-HT, which augments pumping via inhibiting OA secretion by RIC interneurons and, thus, alleviates pumping suppression by OA-activated SIA interneurons/motoneurons. In contrast, nutrient deprivation stimulates RICs to secrete OA, which suppresses pumping via activating SIAs and maintains basal pumping and 5-HT production activity through excitation of ADFs relayed by AWB sensory neurons. Notably, the feedforward and feedback circuits employ distinct modalities of neurosignal integration, namely, disinhibition and disexcitation, respectively.
Summary
Specific recording, labeling, and spatiotemporal manipulating neurons are essential for neuroscience research. In this study, we developed a tripartite spatiotemporal gene induction system in
C. elegans
, which is based on the knockout of two transcriptional terminators (stops in short) by two different recombinases FLP and CRE. The recombinase sites (
lox
P and
FRT
) flanked stops after a ubiquitous promoter terminate transcription of target genes. FLP and CRE, induced by two promoters of overlapping expression, remove the stops (subsequent FLP/CRE-out). The system provides an "AND" gate strategy for specific gene expression in single types of cell(s). Combined with an inducible promoter or element, the system can control the spatiotemporal expression of genes in defined cell types, especially in cells or tissues lacking a specific promoter. This tripartite FLP/CRE-out gene expression system is a simple, labor- and cost-saving toolbox for cell type-specific and inducible gene expression in
C. elegans
.
Although 62 years have elapsed since the first report of hereditary deafness in a mouse strain, the molecular mechanism of hair cell mechanotransduction remains elusive. Three recent studies present crucial insights into the molecular crux of hair cell mechanotransduction machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.