Inhibition of thymidylate synthase (TS) results in a transient flare in DNA thymidine salvage pathway activity measurable with FLT ([18F]thymidine)-positron emission tomography (PET). Here we characterize this imaging strategy for potential clinical translation in non-small cell lung cancer (NSCLC). Since pemetrexed acts by inhibiting TS, we defined the kinetics of increases in thymidine salvage pathway mediated by TS inhibition following treatment with pemetrexed in vitro. Next, using a mouse model of NSCLC, we validated the kinetics of the pemetrexed-mediated flare in thymidine salvage pathway activity in vivo using FLT-PET imaging. Finally, we translated our findings into a proof-of-principle clinical trial of FLT-PET in a human NSCLC patient. In NSCLC cells in vitro, we identified a burst in pemetrexed-mediated thymidine salvage pathway activity, assessed by 3H-thymidine assays, thymidine kinase 1 (TK1) expression, and equilibrative nucleoside transporter 1 (ENT1) mobilization to the cell membrane, that peaked at 2hrs. This 2hr time-point was also optimal for FLT-PET imaging of pemetrexed-mediated TS inhibition in murine xenograft tumors and was demonstrated to be feasible in a NSCLC patient. FLT-PET imaging of pemetrexed-induced TS inhibition is optimal at 2hrs from therapy start; this timing is feasible in human clinical trials.
Optimal MPM enhancement on MRI likely occurs at a time delay between 2.5-5 min following IV contrast administration. Further study of delayed phase enhancement of MPM with dynamic contrast enhanced MRI is warranted.
In agriculture, the search for higher net profit is the main challenge in the economy of the producers and nano biochar attracts increasing interest in recent years due to its unique environmental behavior and increasing the productivity of plants by inducing resistance against phytopathogens. The effect of rice straw biochar and fly ash nanoparticles (RSBNPs and FNPs, respectively) in combination with compost soil on bacterial leaf spot of pepper caused by Xanthomonascampestris pv. vesicatoria was investigated both in vitro and in vivo. The application of nanoparticles as soil amendment significantly improved the chili pepper plant growth. However, RSBNPs were more effective in enhancing the above and belowground plant biomass production. Moreover, both RSBNPs and FNPs, significantly reduced (30.5 and 22.5%, respectively), while RSBNPs had shown in vitro growth inhibition of X.campestris pv. vesicatoria by more than 50%. The X-ray diffractometry of RSBNPs and FNPs highlighted the unique composition of nano forms which possibly contributed in enhancing the plant defence against invading X.campestris pv. vesicatoria. Based on our findings, it is suggested that biochar and fly ash nanoparticles can be used for reclaiming the problem soil and enhance crop productivity depending upon the nature of the soil and the pathosystem under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.