Internet of Things (IoT) communication technologies have brought immense revolutions in various domains, especially in health monitoring systems. Machine learning techniques coupled with advanced artificial intelligence techniques detect patterns associated with diseases and health conditions. Presently, the scientific community is focused on enhancing IoT-enabled applications by integrating blockchain technology with machine learning models to benefit medical report management, drug traceability, tracking infectious diseases, etc. To date, contemporary state-of-the-art techniques have presented various efforts on the adaptability of blockchain and machine learning in IoT applications; however, there exist various essential aspects that must also be incorporated to achieve more robust performance. This study presents a comprehensive survey of emerging IoT technologies, machine learning, and blockchain for healthcare applications. The reviewed articles comprise a plethora of research articles published in the web of science. The analysis is focused on research articles related to keywords such as `machine learning’, blockchain, `Internet of Things or IoT’, and keywords conjoined with `healthcare’ and `health application’ in six famous publisher databases, namely IEEEXplore, Nature, ScienceDirect, MDPI, SpringerLink, and Google Scholar. We selected and reviewed 263 articles in total. The topical survey of the contemporary IoT-based models is presented in healthcare domains in three steps. Firstly, a detailed analysis of healthcare applications of IoT, blockchain, and machine learning demonstrates the importance of the discussed fields. Secondly, the adaptation mechanism of machine learning and blockchain in IoT for healthcare applications are discussed to delineate the scope of the mentioned techniques in IoT domains. Finally, the challenges and issues of healthcare applications based on machine learning, blockchain, and IoT are discussed. The presented future directions in this domain can significantly help the scholarly community determine research gaps to address.
With the growth of computing and communication technologies, the information processing paradigm of the healthcare environment is evolving. The patient information is stored electronically, making it convenient to store and retrieve patient information remotely when needed. However, evolving the healthcare systems into smart healthcare environments comes with challenges and additional pressures. Internet of Things (IoT) connects things, such as computing devices, through wired or wireless mediums to form a network. There are numerous security vulnerabilities and risks in the existing IoT-based systems due to the lack of intrinsic security technologies. For example, patient medical data, data privacy, data sharing, and convenience are considered imperative for collecting and storing electronic health records (EHR). However, the traditional IoT-based EHR systems cannot deal with these paradigms because of inconsistent security policies and data access structures. Blockchain (BC) technology is a decentralized and distributed ledger that comes in handy in storing patient data and encountering data integrity and confidentiality challenges. Therefore, it is a viable solution for addressing existing IoT data security and privacy challenges. BC paves a tremendous path to revolutionize traditional IoT systems by enhancing data security, privacy, and transparency. The scientific community has shown a variety of healthcare applications based on artificial intelligence (AI) that improve health diagnosis and monitoring practices. Moreover, technology companies and startups are revolutionizing healthcare with AI and related technologies. This study illustrates the implication of integrated technologies based on BC, IoT, and AI to meet growing healthcare challenges. This research study examines the integration of BC technology with IoT and analyzes the advancements of these innovative paradigms in the healthcare sector. In addition, our research study presents a detailed survey on enabling technologies for the futuristic, intelligent, and secure internet of health things (IoHT). Furthermore, this study comprehensively studies the peculiarities of the IoHT environment and the security, performance, and progression of the enabling technologies. First, the research gaps are identified by mapping security and performance benefits inferred by the BC technologies. Secondly, practical issues related to the integration process of BC and IoT devices are discussed. Third, the healthcare applications integrating IoT, BC, and ML in healthcare environments are discussed. Finally, the research gaps, future directions, and limitations of the enabling technologies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.