We analyse the computational complexity of three problems in judgment aggregation: (1) computing a collective judgment from a profile of individual judgments (the winner determination problem); (2) deciding whether a given agent can influence the outcome of a judgment aggregation procedure in her favour by reporting insincere judgments (the strategic manipulation problem); and (3) deciding whether a given judgment aggregation scenario is guaranteed to result in a logically consistent outcome, independently from what the judgments supplied by the individuals are (the problem of the safety of the agenda). We provide results both for specific aggregation procedures (the quota rules, the premise-based procedure, and a distance-based procedure) and for classes of aggregation procedures characterised in terms of fundamental axioms
We consider problems in which several individuals each need to make a yes/no choice regarding a number of issues and these choices then need to be aggregated into a collective choice. Depending on the application at hand, different combinations of yes/no may be considered rational. We describe rationality assumptions as integrity constraints using a simple propositional language and we explore the question of whether or not a given aggregation procedure will lift a given integrity constraint from the individual to the collective level, i.e., whether the collective choice will be rational whenever all individual choices are.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference orders), when consolidating conflicting views regarding the relationships between arguments in a debate (graphs as abstract argumentation frameworks), or when computing a consensus between several alternative clusterings of a given dataset (graphs as equivalence relations). In this paper, we introduce a formal framework for graph aggregation grounded in social choice theory. Our focus is on understanding which properties shared by the individual input graphs will transfer to the output graph returned by a given aggregation rule. We consider both common properties of graphs, such as transitivity and reflexivity, and arbitrary properties expressible in certain fragments of modal logic. Our results establish several connections between the types of properties preserved under aggregation and the choice-theoretic axioms satisfied by the rules used. The most important of these results is a powerful impossibility theorem that generalises Arrow's seminal result for the aggregation of preference orders to a large collection of different types of graphs. * This work refines and extends papers presented at COMSOC-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.