Rhodiola rosea L. (Crassulaceae) is a plant living at high altitudes in Europe and Asia. Its roots have long been used in the traditional medical system of these geographical areas to increase the organism resistance to physical stress; today, it has become an important component of many dietary supplements. In this study we investigate the antioxidant capacity of the R. rosea aqueous extract evaluating its ability to counteract some of the main damages induced by hypochlorous acid (HOCl), a powerful oxidant generated by activated phagocytes, to human erythrocytes. Ascorbic acid was used as a reference substance because of its physiological HOCl-scavenging ability. Our study demonstrates that R. rosea is able to significantly protect, in a dose-dependent manner, human RBC from glutathione (GSH) depletion, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inactivation and hemolysis induced by the oxidant. Furthermore, we demonstrate that R. rosea aqueous extract acts from the inside of the erythrocyte suggesting a probable involving of cell components. The protection on GSH afforded by the R. rosea extract with respect to ascorbic acid, occurred also if added 2 or 5 min. later than the oxidant, suggesting a more rapid or powerful effect.
Keratinocytes are cells strongly exposed to oxidative stress, but normally good equipped for antioxidant responses. However, it has long been suggested that exogenous antioxidants could play a useful role in minimizing the adverse skin responses associated with such oxidant species. In this work it was paid attention to the extract of Rhodiola rosea L. roots by using the phytocomplex as a whole because of the important activity of its composition and mutual distribution of its components. We have measured the protection afforded by the extract to reduced glutathione levels, glyceraldehyde-3-phosphate dehydrogenase activity, and thiobarbituric acid reactive substances levels in cultured human keratinocytes (NCTC 2544) exposed to different oxidative insults: Fe(II)/ascorbate, Fe(II)/H(2)O(2), and tert-butyl-hydroperoxide. We also have investigated the influence of the R. rosea extract on the production of intracellular reactive oxygen species and on the activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). Furthermore, we have demonstrated that R. rosea extract was able to increase in a time- and dose-dependent manner the activity of the trans plasma membrane oxido reductase activity as an indirect evaluation of the intracellular redox status and this effect was already evident with small concentration of the extract and in a long time. As a result, NCTC 2544 are able to better counteract to several oxidative insults if incubated with R. rosea extract demonstrating a very good antioxidant activity of this phytocomplex.
Some epidemiological studies have suggested possible associations between exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) and various diseases. Recently, ELF-EMF has been considered as a therapeutic agent. To support ELF-EMF use in regenerative medicine, in particular in the treatment of skin injuries, we investigated whether significant cell damage occurs after ELF-EMF exposure. Reactive oxygen species (ROS) production was evaluated in the human keratinocyte exposed for 1 H to 50 Hz ELF-EMF in a range of field strengths from 0.25 to 2 G. Significant ROS increases resulted at 0.5 and 1 G and under these flux densities ROS production, glutathione content, antioxidant defense activity, and lipid peroxidation markers were assessed for different lengths of time. Analyzed parameters of antioxidant defense and membrane integrity showed a different trend at two selected magnetic fluxes, with a greater sensitivity of the cells exposed to 0.5 G, especially after 1 H. All significant alterations observed in the first 4 H of exposure reverted to controls 24 H after suggesting that under these conditions, ELF-EMF induces a slight oxidative stress that does not overwhelm the metabolic capacity of the cells or have a cytotoxic effect.
Biotinylation of intact mammalian red blood cells (RBC) was performed either by attachment to the amino groups by means of biotin N-hydrosuccinimide ester (NHS-biotin) or by oxidation of the induced aldehyde groups of the RBC membrane by biotin hydrazide. Comparison of these different procedures showed that biotinylation by NHS-biotin provided the highest cell recovery (> 90%), the binding of approximately 1000 biotin molecules/cell (on mouse RBC) and the 24 h survival in circulation was unaffected. In contrast, biotin hydrazide produced cell recovery in the 5-30% range (depending on the extent of oxidation), an undetectable number of molecules of biotin/cell and negligible 24 h survival. Among the NHS derivatives of biotin, further studies were performed on those containing a spacer arm of 2.2 nm (22 A) [sulphosuccinimidyl-6-(biotinamido)-hexanoate]. In vitro this derivative was similar to, or better than, the NHS-biotin in terms of cell recovery and the number of molecules/cell. In vivo this derivative showed a 24 h circulation survival similar to that of NHS-biotin. Unfortunately, biotin bound with such a spacer arm is lost after a few days of RBC circulation, probably due to plasma biotinidase. Possible applications of biotinylated RBCs include the in vivo measurement of RBC volume, the RBC survival and the delivery of enzyme and antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.