Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
To improve existing social bookmarking systems and to design new ones, researchers and practitioners need to understand how to evaluate tagging behavior. In this paper, we analyze over two years of data from CiteULike, a social bookmarking system for tagging academic papers. We propose six tag metrics-tag growth, tag reuse, tag non-obviousness, tag discrimination, tag frequency, and tag patterns-to understand the characteristics of a social bookmarking system. Using these metrics, we suggest possible design heuristics to implement a social bookmarking system for CiteSeer, a popular online scholarly digital library for computer science. We believe that these metrics and design heuristics can be applied to social bookmarking systems in other domains.
BackgroundMeasuring quality of life (QOL) in a population is important for the predictions of health and social care needs. In Pakistan, health related quality of life data exist but there are no quality of life data of general population. In this study, quality of life was assessed among the Pakistani general population and their associated factors by using the World Health Organization’s quality of life instrument (WHOQOL-BREF).MethodologyA population-based cross-sectional study was carried out in all 52 Union Councils of District Abbottabad, Khaber Pkutunkhua province, Pakistan from March 2015 to August 2015. Multi-stage cluster sampling technique was employed in this study. Quality of life was measured by using the validated WHOQOL-BREF instrument, along with socioeconomic, demographic, and World Bank social capital questions in this population- based study. The data were collected through households, utilizing face to face interviews. The association between socio-demographic variables and quality of life domains were determined by using both univariate and multivariate analysis. Descriptive statistics were derived, and a multilevel linear regression using backward analysis allowing to obtain final model for each domain was achieved to recognize the variables that affect quality of life score.ResultsA total of 2063 participants were included in this study (51.2% male, 48.2% female). Mean age of participants was 37.9, SD = 13.2; ranging from 18 to 90. Mean score of quality of life domains (physical, psychological, social relationship and environmental domains) were 65.0 (SD = 15.2), 67.4 (SD = 15.0), 72.0 (SD = 16.5), 55.5 (SD = 15.0), respectively. Overall, socioeconomic status was established to be the strongest predictor of poorer quality of life for all domains as a change in SES from high to low results in reduction about (β = − 5.85, β = − 9.03, β = − 8.33, β = − 9.98, p < 0.001). Similarly, type of residency was negatively associated with physical, psychological and environmental domains while age and sex were negatively associated with physical, psychological and relationship domains in final model. Furthermore social capital (β = 0.09, β = 0.13, β =0.14, β =0.15, p < 0.001) had a positive effect on Pakistani quality of life. Overall, subjective quality of life was found to be low in our population and extremely varied by socio-demographic variables.ConclusionsIncreasing age, having average and lower socioeconomic status and living in the rural area were found to be the strong predictor of poorer quality of life in all domains, while total social capital score had a positive effect on Pakistani quality of life scores.Electronic supplementary materialThe online version of this article (10.1186/s12955-018-1065-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.