Background: Automated segmentation of fluorescentlylabeled cell nuclei in 3D confocal microscope images is essential to many studies involving morphological and functional analysis. A common source of segmentation error is tight clustering of nuclei. There is a compelling need to minimize these errors for constructing highly automated scoring systems. Methods: A combination of two approaches is presented. First, an improved distance transform combining intensity gradients and geometric distance is used for the watershed step. Second, an explicit mathematical model for the anatomic characteristics of cell nuclei such as size and shape measures is incorporated. This model is constructed automatically from the data. Deliberate initial over-segmentation of the image data is performed, followed by statistical model-based merging. A confidence score is computed for each detected nucleus, measuring
Statistical analysis of genetic changes within cell nuclei that are far from the primary tumor would help determine whether such changes have occurred prior to tumor invasion. To determine whether the gene amplification in cells is morphologically and/or genetically related to the primary tumor requires quantitative evaluation of a large number of cell nuclei from continuous meaningful structures such as milk-ducts, tumors, etc., located relatively far from the primary tumor. To address this issue, we have designed an integrated image analysis software system for high-throughput segmentation of nuclei. Filters such as Beltrami flow-based reaction-diffusion, directional diffusion, etc., were used to pre-process the images resulting in a better segmentation. The accurate shape of the segmented nucleus was recovered using an iterative "shrink-wrap" operation. The study of two cases of ductal carcinoma in situ in breast tissue supports the biological observation regarding the existence of a preferential intraductal invasion, and therefore a common origin, between the primary tumor and the gene amplification in the cell-nuclei lining the ductal structures in the breast.
SummaryThe three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.