The surprisal of a word on a probabilistic grammar constitutes a promising complexity metric for human sentence comprehension difficulty. Using two different grammar types, surprisal is shown to have an effect on fixation durations and regression probabilities in a sample of German readers’ eye movements, the Potsdam Sentence Corpus. A linear mixed-effects model was used to quantify the effect of surprisal while taking into account unigram frequency and bigram frequency (transitional probability), word length, and empirically-derived word predictability; the socalled “early” and “late” measures of processing difficulty both showed an effect of surprisal. Surprisal is also shown to have a small but statistically non-significant effect on empirically-derived predictability itself. This work thus demonstrates the importance of including parsing costs as a predictor of comprehension difficulty in models of reading, and suggests that a simple identification of syntactic parsing costs with early measures and late measures with durations of post-syntactic events may be difficult to uphold.
It has been proposed that in online sentence comprehension the dependency between a reflexive pronoun such as himself/herself and its antecedent is resolved using exclusively syntactic constraints. Under this strictly syntactic search account, Principle A of the binding theory—which requires that the antecedent c-command the reflexive within the same clause that the reflexive occurs in—constrains the parser's search for an antecedent. The parser thus ignores candidate antecedents that might match agreement features of the reflexive (e.g., gender) but are ineligible as potential antecedents because they are in structurally illicit positions. An alternative possibility accords no special status to structural constraints: in addition to using Principle A, the parser also uses non-structural cues such as gender to access the antecedent. According to cue-based retrieval theories of memory (e.g., Lewis and Vasishth, 2005), the use of non-structural cues should result in increased retrieval times and occasional errors when candidates partially match the cues, even if the candidates are in structurally illicit positions. In this paper, we first show how the retrieval processes that underlie the reflexive binding are naturally realized in the Lewis and Vasishth (2005) model. We present the predictions of the model under the assumption that both structural and non-structural cues are used during retrieval, and provide a critical analysis of previous empirical studies that failed to find evidence for the use of non-structural cues, suggesting that these failures may be Type II errors. We use this analysis and the results of further modeling to motivate a new empirical design that we use in an eye tracking study. The results of this study confirm the key predictions of the model concerning the use of non-structural cues, and are inconsistent with the strictly syntactic search account. These results present a challenge for theories advocating the infallibility of the human parser in the case of reflexive resolution, and provide support for the inclusion of agreement features such as gender in the set of retrieval cues.
Individuals with agrammatic Broca's aphasia experience difficulty when processing reversible non-canonical sentences. Different accounts have been proposed to explain this phenomenon. The Trace Deletion account (Grodzinsky, 1995, 2000, 2006) attributes this deficit to an impairment in syntactic representations, whereas others (e.g., Caplan, Waters, Dede, Michaud, & Reddy, 2007; Haarmann, Just, & Carpenter, 1997) propose that the underlying structural representations are unimpaired, but sentence comprehension is affected by processing deficits, such as slow lexical activation, reduction in memory resources, slowed processing and/or intermittent deficiency, among others. We test the claims of two processing accounts, slowed processing and intermittent deficiency, and two versions of the Trace Deletion Hypothesis (TDH), in a computational framework for sentence processing (Lewis & Vasishth, 2005) implemented in ACT-R (Anderson, Byrne, Douglass, Lebiere, & Qin, 2004). The assumption of slowed processing is operationalized as slow procedural memory, so that each processing action is performed slower than normal, and intermittent deficiency as extra noise in the procedural memory, so that the parsing steps are more noisy than normal. We operationalize the TDH as an absence of trace information in the parse tree. To test the predictions of the models implementing these theories, we use the data from a German sentence-picture matching study reported in Hanne, Sekerina, Vasishth, Burchert, and De Bleser (2011). The data consist of offline (sentence-picture matching accuracies and response times) and online (eye fixation proportions) measures. From among the models considered, the model assuming that both slowed processing and intermittent deficiency are present emerges as the best model of sentence processing difficulty in aphasia. The modeling of individual differences suggests that, if we assume that patients have both slowed processing and intermittent deficiency, they have them in differing degrees.
We propose a retrieval interference-based explanation of a prediction advantage effect observed in Stone et al. (2021). They reported two dual-task eye-tracking experiments in which participants listened to instructions involving German possessive pronouns, e.g. ‘Click on his blue button’, and were asked to select the correct object from a set of objects displayed on screen. Participants’ eye movements showed predictive processing, such that the target object was fixated before its name was heard. Moreover, when the target and the antecedent of the pronoun matched in gender, predictions arose earlier than when the two genders mismatched — a prediction advantage. We propose that the prediction advantage arises due to similarity-based interference during antecedent retrieval, such that the overlap of gender features between the antecedent and possessum boosts the activation level of the latter and helps predict it faster. We report an ACT-R model supporting this hypothesis. Our model also provides a computational implementation of the idea that prediction can be thought of as memory retrieval. In addition, we provide a preliminary ACT-R model of how linguistic processes could drive changes in visual attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.