Flashing of high temperature, pressurized slurry within hydrometallurgical processing circuits is a commonly encountered multiphase flow scenario, which can lead to catastrophic equipment failure and serious operational problems if not designed correctly. The current work aims to shed light on the state of the art modelling and experimentation, important physical phenomena, and recent operational experience surrounding this problem. In addition, recommendations will be provided for future modelling and experimental efforts in order to direct research into avenues that provide valuable information for engineers designing piping and vessels where the flashing of high pressure slurry occurs.
Significant advancements in physics-based model development, software workflow practices, multi-core processing and cost-effective cloud computing has enabled the adoption of high fidelity, three-dimensional (3D) modeling such as computational fluid dynamics (CFD), finite element analysis (FEA), and other first principles-based analyses into normal engineering design practices. Historically, integration of these tools into the standard engineering workflow was challenging due to the excessively long turnaround times to deliver any results.
Three Case Studies are subsequently presented where 3D modeling analysis was used early and seamlessly in the engineering design process to solve problems related to consequence analysis and equipment operational performance:
Case 1) Risk assessment of pilot flame extinguishment due to inert gas discharge from the flare of an FPSO,
Case 2) Jet dispersion analysis from HP/LP flare to assess hydrocarbon and H2S concentrations at critical locations on the platform, including results comparison between CFD results and a conventional dispersion tool – Flaresim, and,
Case 3) Solving a fatigue induced cracking problem on the cooling water circuit of a heat exchanger using an integrated workflow consisting of CFD modelling of the cooling water, stress analysis using FEA, and structural integrity assessment per ASME BPVC VIII Division 2.
The modelling results from these case studies were generated in timeframes similar to those using conventional engineering calculation methods, and thus allowed for prompt integration into the engineering design process without impacting project schedules and delivery. Moreover, the costs to perform these modelling analyses were not substantially greater than the costs associated with conventional calculation methods, thereby providing high value to the engineering projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.