Environmental stressors have, over generations, influenced the morphology, anatomy, behaviour, physiology, and genetic structure of small ruminants. The widespread dispersal of small ruminants over vast geographical areas occurred along with human migration, thereby promoting the adaptative process to different environmental conditions mainly through natural selection. Ongoing global warming prompted scientific efforts to deepen the knowledge and understanding of adaptation traits in small ruminants. Compared to other ruminants, sheep and goats seem to have a better adaptation ability to environmental stressors, as evident by their presence across different geographic areas on a global level. Adaptation to a specific environment leads to variations in precise genomic regions, allowing for the identification and selection of animals with a high capacity of adaptation to environmental stressors. Rapid development in sequencing technologies, together with bioinformatics tools, make it possible to analyse the genomic regions related to environmental adaptation. Hence, the aims of this review were (i) to outline the main steps of the evolution process in sheep and goat species, (ii) to summarise candidate genes related to environmental adaptation, and (iii) to evaluate both selection and conservation possibilities of these genes in native small ruminant breeds for future challenges to better face the global warming.
Abstract. This study aimed to reveal the genetic variability of mitochondrial DNA (mtDNA) displacement-loop (D-loop) region in 62 animals belonging to three native Turkish cattle breeds, namely Anatolian Black (AB), East Anatolian Red (EAR) and Zavot (ZAV), and to conduct phylogenetic relationship analyses to obtain deeper information on their genetic origin and breeding history by comparison of 6 taurine and 11 indicine breeds, together with 66 polymorphic sites, a total of 31 haplotypes, of which 15, 10 and 6 were detected in AB, EAR and ZAV, respectively. Mean nucleotide and haplotype diversity were 0.01 and 0.891, respectively, whereas the genetic differentiation derived from Wright's FST index was 0.174 across the breeds. A significant level of total variation (17.42 %) was observed among breeds in molecular variance analysis. Six main haplogroups (T, T1, T2, T3, Q and I2) were detected in Anatolian cattle populations, where T3 was the most frequent among breeds (43.55 %), whereas I2, an indicine specific haplogroup, was observed only in ZAV. At the breed level, phylogenetic analyses supported by 198 sequences of 17 cattle breeds and 3 outgroup species retrieved from the GenBank clustered native Turkish cattle breeds with the taurine group rather than the indicine one, as expected. However, indicine admixture at low frequency (8.89 %) was detected in the ZAV breed for the first time due to more likely gene flow from indicine cattle breeds raised in neighbour countries, particularly Iran. This finding should be further investigated in all native Turkish and indicine cattle breeds from nearby countries to clarify gene flow and indicine admixture in Anatolian cattle.
Since domestication, farm animals have played a key role to increase the prosperity of humankind, while animal welfare (AW) is debated even today. This paper aims to comprehensively review the contributions of developing molecular genetics to farm animal welfare (FAW) and to raise awareness among both scientists and farmers about AW. Welfare is a complex trait affected by genetic structure and environmental factors. Therefore, the best welfare status can be achieved not only to enhance environmental factors such as management and feeding practices, but also the genetic structure of animals must be improved. In this regard, advances in molecular genetics have made great contributions to improve the genetic structure of farm animals, which has increased AW. Today, by sequencing and/or molecular markers, genetic diseases may be detected and eliminated in local herds. Additionally, genes related to diseases or adaptations are investigated by molecular techniques, and the frequencies of desired genotypes are increased in farm animals to keep welfare at an optimized level. Furthermore, stress on animals can be reduced with DNA extraction from stool and feather samples which reduces physical contact between animals and veterinarians. Together with molecular genetics, advances in genome editing tools and biotechnology are promising to improve FAW in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.