Television exposure is not independently associated with child language development when adult-child conversations are controlled. Adult-child conversations are robustly associated with healthy language development. Parents should be encouraged not merely to provide language input to their children through reading or storytelling, but also to engage their children in two-sided conversations.
For generations the study of vocal development and its role in language has been conducted laboriously, with human transcribers and analysts coding and taking measurements from small recorded samples. Our research illustrates a method to obtain measures of early speech development through automated analysis of massive quantities of day-long audio recordings collected naturalistically in children's homes. A primary goal is to provide insights into the development of infant control over infrastructural characteristics of speech through large-scale statistical analysis of strategically selected acoustic parameters. In pursuit of this goal we have discovered that the first automated approach we implemented is not only able to track children's development on acoustic parameters known to play key roles in speech, but also is able to differentiate vocalizations from typically developing children and children with autism or language delay. The method is totally automated, with no human intervention, allowing efficient sampling and analysis at unprecedented scales. The work shows the potential to fundamentally enhance research in vocal development and to add a fully objective measure to the battery used to detect speech-related disorders in early childhood. Thus, automated analysis should soon be able to contribute to screening and diagnosis procedures for early disorders, and more generally, the findings suggest fundamental methods for the study of language in natural environments.
The study compared the vocal production and language learning environments of 26 young children with autism spectrum disorder (ASD) to 78 typically developing children using measures derived from automated vocal analysis. A digital language processor and audio-processing algorithms measured the amount of adult words to children and the amount of vocalizations they produced during 12-h recording periods in their natural environments. The results indicated significant differences between typically developing children and children with ASD in the characteristics of conversations, the number of conversational turns, and in child vocalizations that correlated with parent measures of various child characteristics. Automated measurement of the language learning environment of young children with ASD reveals important differences from the environments experienced by typically developing children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.