Electromechanical actuators are widely used in miscellaneous applications in engineering such as aircrafts, missiles, etc. due to their momentary overdrive capability, long-term storability, and low quiescent power/low maintenance characteristics. This work focuses on electromechanical control actuation systems (CAS) that are composed of a brushless direct current motor, ball screw, and lever mechanism. In this type of CAS, nonlinearity and asymmetry occur due to the lever mechanism itself, saturation limits, Coulomb friction, backlash, and initial mounting position of lever mechanism. In this study, both nonlinear and linear mathematical models are obtained using governing equations of motion. By using the linear model, it is shown that employing a PI-controller for position and a P-controller for velocity will be sufficient to satisfy performance requirements in the inner-loop control of an electromechanical CAS. The unknown controller parameters and anti-windup coefficient are obtained by the Optimization Tools of MATLAB using nonlinear model. Results obtained from the nonlinear model and real-time unloaded and loaded tests on a prototype developed are compared to verify the nonlinear model.
Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.