This paper examined the effect of machining parameters on surface roughness of medium density fiberboard (MDF) machined using a computer numerical control (CNC) router. The machining parameters such as spindle speed, feed rate, depth of cut, and tool diameter were examined for milling. The experiments were conducted at two levels of spindle speeds, four levels of feed rates, two levels of tool diameters, and two levels of axial depths of cut. The surface roughness values of MDF grooved by CNC were measured with stylus-type equipment. Statistical methods were used to determine the effectiveness of the machining parameters on surface roughness. The influence of each milling parameter affecting surface roughness was analyzed using analysis of variance (ANOVA). The significant machining parameters affecting the surface roughness were the feed rate, spindle speed, and tool diameter (p < 0.05). There was no significant influence of axial depth of cut on the surface roughness. The surface roughness decreased with increasing spindle speed and decreasing feed rate. The value of surface roughness increased with the increase of tool diameter.
The static responses of timber-framed shear walls with and without openings of variable dimensions and locations were numerically investigated using the finite-element (FE) method. The lateral load resistance capacities and general load–displacement behaviours of the timber-framed shear walls were investigated. In the FE study, the frame elements were modelled as beams, plates were modelled as shells and nails were modelled as spring elements. The plastic behaviour of the materials was modelled using experimental stress–strain relationships of the materials. For timber frames and oriented strand board (OSB) panels, uniaxial stress–strain curves were experimentally obtained under tensile and compressive loading. From the experimental materials models it was found that spruce exhibited non-linear behaviour under both tensile and compressive stress. In contrast, the OSB sheathing layer used in the analyses exhibited non-linear behaviour under compressive stress and linear behaviour under tensile stress. The numerical results were verified using experimental load–deflection relationships obtained from a previous study. Good agreement was found between the analytical and experimental results. To further examine the applicability of the experimentally verified numerical model, four different timber-framed shear walls were simulated with FE models.
In the last 20 years, the use of wooden structures and their dimensions have gradually increased. The wood application has increased in different structures such as multistory buildings, sports, industrial facilities, road and railway bridges, power transmission lines, and towers. The widespread use and size of wood structures have increased the research on developing special types of wood products supported by composite materials. Laminated wood elements are the leading composite wood materials. Laminated wooden beams allow making much larger openings than standard solid wood structural elements. The development of the sizes and usage areas of wooden structures has increased the capacity of glulam structural elements and reveals the need to improve their performance. Carbon fiber reinforced polymers (CFRPs) are the most suitable options for increasing the bearing capacity values of glulam beams and improving general load–displacement behaviors. In this study, the use of CFRP strips in different layouts to increase glulam wooden beams and the application of CFRP fan-type anchors in the CFRP strip endpoints are the studied variables. Anchored and non-anchored glulam wooden beams reinforced with CFRP strips with different layouts were tested using a three-point bending test. The ultimate load capacity, initial stiffness, displacement ductility ratio, energy dissipation capacity, failure mechanisms, and general load–displacement behavior of wooden beam test specimens were obtained and interpreted as a result of the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.