Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants’ behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants’ behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants’ lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research.
Since its unveiling in 2011, schema.org has become the de facto standard for publishing semantically described structured data on the web, typically in the form of web page annotations. The increasing adoption of schema.org facilitates the growth of the web of data, as well as the development of automated agents that operate on this data. Schema.org is a large heterogeneous vocabulary that covers many domains. This is obviously not a bug, but a feature, since schema.org aims to describe almost everything on the web, and the web is huge. However, the heterogeneity of schema.org may cause a side effect, which is the challenge of picking the right classes and properties for an annotation in a certain domain, as well as keeping the annotation semantically consistent. In this work, we introduce our rule based approach and an implementation of it for validating schema.org annotations from two aspects: (a) the completeness of the annotations in terms of a specified domain, (b) the semantic consistency of the values based on pre-defined rules. We demonstrate our approach in the tourism domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.