In the framework of the Horizon 2020 project ESFR-SMART (2017-2021), the European Sodium Fast Reactor (ESFR) core was updated through a safety-related modification and optimization of the core design from the earlier FP7 CP-ESFR project (2009-2013).
This study is dedicated to neutronic analyses of the improved ESFR core design. The conducted work is reported in two parts. Part I deals with the evaluation of the safety-related neutronic parameters of the fresh Beginning-of-Life (BOL) core carried out by 8 organizations using both continuous energy Monte Carlo and deterministic computer codes. In addition to the neutronics characterization of the core, a special emphasis was put on the calibration and verification of the computational tools involved in the analyses.
Part II is devoted to once-through and realistic batch-wise burnup calculations aiming at the establishing of the equilibrium core state, which will later serve as a basis for detailed safety analyses.
In the framework of the Horizon 2020 project ESFR-SMART (2017-2021), the European Sodium Fast Reactor (ESFR) core was updated through a safety-related modification and optimization of the core design from the earlier FP7 CP-ESFR project (2009-2013). This study is dedicated to neutronic analyses of the improved ESFR core design. The conducted work is reported in two parts. Part I deals with the evaluation of the safety-related neutronic parameters of the fresh Beginning-of-Life (BOL) core carried out by 8 organizations using both continuous energy Monte Carlo and deterministic computer codes. In addition to the neutronics characterization of the core, a special emphasis was put on the calibration and verification of the computational tools involved in the analyses. Part II is devoted to once-through and realistic batch-wise burnup calculations aiming at the establishing of the equilibrium core state, which will later serve as a basis for detailed safety analyses.
The ESFR-SMART project is the latest iteration of research into the behaviour of a commercial-size SFR core throughout its lifetime. As part of this project the ESFR core has been modelled by a range of different reactor physics simulation codes at its end of cycle state, and the important safety relevant parameters evaluated. These parameters are found to agree well between the different codes, giving good confidence in the results.
A detailed mapping of the local sodium void worth is also performed due to the problems associated with the positive void coefficient seen in large SFR designs. The local void worth maps show that the use of zone-wise coefficients replicates the important reactivity feedbacks to a high degree, indicating their suitability for use in SFR simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.