Biomedical systems produce biosignals that arise from interaction mechanisms. In a general form, those mechanisms occur across multiple scales, both spatial and temporal, and contain linear and non-linear information. In this framework, entropy measures are good candidates in order provide useful evidence about disorder in the system, lack of information in time-series and/or irregularity of the signals. The most common movement disorder is essential tremor (ET), which occurs 20 times more than Parkinson's disease. Interestingly, about 50%-70% of the cases of ET have a genetic origin. One of the most used standard tests for clinical diagnosis of ET is Archimedes' spiral drawing. This work focuses on the selection of non-linear biomarkers from such drawings and handwriting, and it is part of a wider cross study on the diagnosis of essential tremor, where our piece of research presents the selection of entropy features for early ET diagnosis. Classic entropy features are compared with features based on permutation entropy. Automatic analysis system settled on several Machine Learning paradigms is performed, while automatic features selection is implemented by means of ANOVA (analysis of variance) test. The obtained results for early detection are promising and appear applicable to real environments.
Internet of things and smart cities are becoming a reality. Nowadays, more and more devices are interconnected and in order to deal with this new situation, data processing speeds are increasing to keep the pace. Smart devices like tablets and smartphones are accessible to a wide part of society in developed countries, and Internet connections for data exchange make it possible to handle large volumes of information in less time. This new reality has opened up the possibility of developing client-server architectures focused on clinical diagnosis in real time and at a very low cost. This paper illustrates the design and implementation of the ALZUMERIC system that is oriented to the diagnosis of Alzheimer’s disease (AD). It is a platform where the medical specialist can gather voice samples through non-invasive methods from patients with and without mild cognitive impairment (MCI), and the system automatically parameterizes the input signal to make a diagnose proposal. Although this type of impairment produces a cognitive loss, it is not severe enough to interfere with daily life. The present approach is based on the description of speech pathologies with regard to the following profiles: phonation, articulation, speech quality, analysis of the emotional response, language perception, and complex dynamics of the system. Privacy, confidentiality and information security have also been taken into consideration, as well as possible threats that the system could suffer, so this first prototype of services offered by ALZUMERIC has been targeted to a predetermined number of medical specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.