B-mode ultrasound is an essential part of radiological examinations due to its low cost, safety, and portability, but has the drawbacks of the speckle noise and output of most systems is two-dimensional (2D) cross sections. Image restoration techniques, using mathematical models for image degradation and noise, can be used to boost resolution (deconvolution) as well as to reduce the speckle. In this study, new single-image Bayesian restoration (BR) and multi-image super-resolution restoration (BSRR) methods are proposed for in-plane B-mode ultrasound images. The spatially correlated nature of the speckle was modeled, allowing for examination of two different models for BR and BSRR for uncorrelated Gaussian (BR-UG, BSRR-UG) and correlated Gaussian (BR-CG, BSRR-CG). The performances of these models were compared with common image restoration methods (Wiener filter, bilateral filtering, and anisotropic diffusion). Well-recognized metrics (peak signal-to-noise ratio, contrast-to-noise ratio, and normalized information density) were used for algorithm free-parameter estimation and objective evaluations. The methods were tested using superficial tissue (2D scan data collected from volunteers, tissue-mimicking resolutions, and breast phantoms). Improvement in image quality was assessed by experts using visual grading analysis. In general, BSRR-CG performed better than all other methods. A potential downside of BSRR-CG is increased computation time, which can be addressed by the use of high-performance graphics processing units (GPUs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.