Elastomer-infiltrated vertically aligned carbon nanotube (VACNT) forests are good candidates for use as stretchable conductors that can retain the electrical properties under relatively large stretching. The electrical performance can be further enhanced in terms of high stretchability and small change in the electrical resistance by using a wavy configuration. In this work, we present a wavy-structured high-performance stretchable conductor prepared by a simple prestraining approach based on polydimethylsiloxane (PDMS)-infiltrated VACNT films. Prior to the infiltration process, the VACNT forests can also be easily micropatterned by a PDMS stamp-assisted contact transfer printing technique. The conductive VACNT forest patterns are fully infiltrated with highly elastic PDMS, and the PDMS/VACNT film is conformally and strongly bonded to the prestrained PDMS substrate with the help of an intermediate thin PDMS layer, resulting in mechanical robustness of the whole device. The fabricated wavy VACNT conductor shows a small resistance change ratio of less than 6% with a tensile strain of up to 100% (prestrained level) and a high reversibility under multiple stretching/releasing cycles with a maximum strain of 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.