In this paper, we conduct a literature survey on various virtual reality (VR) treatments in psychiatry. We collected 36 studies that used VR to provide clinical trials or therapies for patients with psychiatric disorders. In order to gain a better understanding of the management of pain and stress, we first investigate VR applications for patients to alleviate pain and stress during immersive activities in a virtual environment. VR exposure therapies are particularly effective for anxiety, provoking realistic reactions to feared stimuli. On top of that, exposure therapies with simulated images are beneficial for patients with psychiatric disorders such as phobia and posttraumatic stress disorder (PTSD). Moreover, VR environments have shown the possibility of changing depression, cognition, even social functions. We review empirical evidence from VR-based treatments on psychiatric illnesses such as dementia, mild cognitive impairment (MCI), schizophrenia and autism. Through cognitive training and social skill training, rehabilitation through VR therapies helps patients to improve their quality of life. Recent advances in VR technology also demonstrate potential abilities to address cognitive and functional impairments in dementia. In terms of the different types of VR systems, we discuss the feasibility of the technology within different stages of dementia as well as the methodological limitations. Although there is room for improvement, its widespread adoption in psychiatry is yet to occur due to technical drawbacks such as motion sickness and dry eyes, as well as user issues such as preoccupation and addiction. However, it is worth mentioning that VR systems relatively easily deliver virtual environments with well-controlled sensory stimuli. In the future, VR systems may become an innovative clinical tool for patients with specific psychiatric symptoms.
BackgroundMost studies of smartphone-based assessments of motor symptoms in Parkinson’s disease (PD) focused on gait, tremor or speech. Studies evaluating bradykinesia using wearable sensors are limited by a small cohort size and study design. We developed an application named smartphone tapper (SmT) to determine its applicability for clinical purposes and compared SmT parameters to current standard methods in a larger cohort.MethodsA total of 57 PD patients and 87 controls examined with motor UPDRS underwent timed tapping tests (TT) using SmT and mechanical tappers (MeT) according to CAPSIT-PD. Subjects were asked to alternately tap each side of two rectangles with an index finger at maximum speed for ten seconds. Kinematic measurements were compared between the two groups.ResultsThe mean number of correct tapping (MCoT), mean total distance of finger movement (T-Dist), mean inter-tap distance, and mean inter-tap dwelling time (IT-DwT) were significantly different between PD patients and controls. MCoT, as assessed using SmT, significantly correlated with motor UPDRS scores, bradykinesia subscores and MCoT using MeT. Multivariate analysis using the SmT parameters, such as T-Dist or IT-DwT, as predictive variables and age and gender as covariates demonstrated that PD patients were discriminated from controls. ROC curve analysis of a regression model demonstrated that the AUC for T-Dist was 0.92 (95% CI 0.88–0.96).ConclusionOur results suggest that a smartphone tapping application is comparable to conventional methods for the assessment of motor dysfunction in PD and may be useful in clinical practice.
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.
Crosstalk of signaling pathways play crucial roles in cell proliferation, cell differentiation, and cell fate determination for development. In the case of ventx1.1 in Xenopus embryos, both BMP-4/Smad-1 and FGF/Xbra signaling induce the expression of neural repressor ventx1.1. However, the details of how these two pathways interact and lead to neural inhibition by ventx1.1 remain largely unknown. In the present study, Xbra directly bound to the ventx1.1 promoter region and inhibited neurogenesis in a Ventx1.1-dependent manner. Furthermore, Smad-1 and Xbra physically interacted and regulated ventx1.1 transcription in a synergistic fashion. Xbra and Smad-1 interaction cooperatively enhanced the binding of an interacting partner within the ventx1.1 promoter and maximum cooperation was achieved in presence of intact DNA binding sites for both Smad-1 and Xbra. Collectively, BMP-4/Smad-1 and FGF/Xbra signal crosstalk cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. This suggests that the crosstalk between BMP-4 and FGF signaling negatively regulates early neurogenesis by synergistic activation of ventx1.1 in Xenopus embryos.
Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.