Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid-and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on marginal energy economies of a syntrophic lifestyle. The genome contains 3,179,300 base pairs and 3,169 genes where 1,618 genes were assigned putative functions. Metabolic reconstruction of the gene inventory revealed that most biosynthetic pathways of a typical Gram-negative microbe were present. A distinctive feature of syntrophic metabolism is the need for reverse electron transport; the presence of a unique Rnf-type ion-translocating electron transfer complex, menaquinone, and membrane-bound Fe-S proteins with associated heterodisulfide reductase domains suggests mechanisms to accomplish this task. Previously undescribed approaches to degrade fatty and aromatic acids, including multiple AMP-forming CoA ligases and acyl-CoA synthetases seem to be present as ways to form and dissipate ion gradients by using a sodium-based energy strategy. Thus, S. aciditrophicus, although nutritionally self-sufficient, seems to be a syntrophic specialist with limited fermentative and respiratory metabolism. Genomic analysis confirms the S. aciditrophicus metabolic and regulatory commitment to a nonconventional mode of life compared with our prevailing understanding of microbiology.anaerobic food chains ͉ syntrophic metabolism ͉ fatty acid and benzoate utilization
SummaryBioluminescence generated by the Vibrio fischeri Lux system consumes oxygen and reducing power, and it has been proposed that cells use this to counteract either oxidative stress or the accumulation of excess reductant. These models predict that lux expression should respond to redox conditions; yet no redoxresponsive regulator of lux is known. We found that the luxICDABEG operon responsible for bioluminescence is repressed by the ArcAB system, which is activated under reducing conditions. Consistent with a role for ArcAB in connecting redox monitoring to lux regulation, adding reductant decreased luminescence in an arc-dependent manner. ArcA binds to and regulates transcription from the luxICDABEG promoter, and it represses luminescence both in the bright strain MJ1 and in ES114, an isolate from the squid Euprymna scolopes that is not visibly luminescent in culture. In ES114, deleting arcA increased luminescence in culture~500-fold to visible levels comparable to that of symbiotic cells. ArcA did not repress symbiotic luminescence, but by 48 h after inoculation, ArcA did contribute to colonization competitiveness. We hypothesize that inactivation of ArcA in response to oxidative stress during initial colonization derepresses luxICDABEG, but that ArcAB actively regulates other metabolic pathways in the more reduced environment of an established infection.
The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA ؉ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms.
The outermost cell envelope structure of many archaea and bacteria contains a proteinaceous lattice termed the surface layer or S-layer. It is typically composed of only one or two abundant, often posttranslationally modified proteins that self-assemble to form the highly organized arrays. Surprisingly, over a hundred proteins were annotated to be S-layer components in the archaeal species Methanosarcina acetivorans C2A and Methanosarcina mazei Gö1, reflecting limitations of current predictions. An in vivo biotinylation methodology was devised to affinity tag surface-exposed proteins while overcoming unique challenges in working with these fragile organisms. Cells were adapted to growth under N 2 fixing conditions, thus minimizing free amines reactive to the NHSlabel, and high pH media compatible with the acylation chemistry was used. A 3-phase separation procedure was employed to isolate intact, labeled cells from lysed-cell derived proteins. Streptavidin affinity enrichment followed by stringent wash conditions removed non-specifically bound proteins. This methodology revealed S-layer proteins in M. acetivorans C2A and M. mazei Gö1 to be MA0829 and MM1976, respectively. Each was demonstrated to exist as multiple glycosylated forms using SDS-PAGE coupled with glycoprotein-specific staining, and by interaction with the lectin, Concanavalin A. A number of additional surface-exposed proteins and glycoproteins were identified and included all three subunits of the thermosome: the latter suggests that the chaperonin complex is both surface-and cytoplasmically-localized. This approach provides an alternative strategy to study surface proteins in the archaea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.