This paper develops a model of technological progress in the microprocessor industry that connects the seemingly disparate engineering and economic measures of technological progress. Technological progress in the microprocessor industry is driven by the repeated adoption of higher quality vintages of capital equipment produced by the upstream semiconductor equipment industry. The model characterizes the optimal adoption decision of a microprocessor firm and the resulting rate of technological progress. In conjunction with parameters estimated using a new dataset of the microprocessor industry, the model suggests explanations for the acceleration in technological progress during 1990–2000 and the subsequent slowdown.
We develop a model of competition in the solar panel industry. Solar firms manufacture panels that are differentiated both vertically and horizontally, and compete by setting quantities.The equilibrium of the model is consistent with a set of stylized facts that we document, including variation in prices, markups and market shares across firms. We calibrate the model using a new dataset data on prices, costs and shipments of leading solar companies, as well as solar sales in four leading markets. The calibrated model is applied to evaluate the impact of a decline in the price of polysilicon, a key raw material used in the manufacture of solar panels, on the equilibrium price of solar panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.