The identification and discrimination of diols is of fundamental importance in medical diagnostics, such as measuring the contents of glucose in the urine of diabetes patients. Diol sensors are often based on fluorophore-appended boronic acids, but these severely lack discriminatory power and their response is one-dimensional. As an alternative strategy, we present the use of fluorinated boronic acid-appended pyridinium salts in combination with F NMR spectroscopy. A pool of 59 (bio)analytes was screened, containing monosaccharides, phosphorylated and N-acetylated sugars, polyols, carboxylic acids, nucleotides, and amines. The majority of analytes could be clearly detected and discriminated. In addition, glucose and fructose could be distinguished up to 1:9 molar ratio in mixtures. Crucially, the receptors feature high sensitivity and selectivity and are water-soluble, and theirF-NMR analyte fingerprint is pH-robust, thereby making them particularly well-suited for medical application. Finally, to demonstrate this applicability, glucose could be detected in synthetic urine samples down to 1 mM using merely a 188 MHz NMR spectrometer.
Co-registered molecular logic gates combine two different inputs and outputs, such as light and matter. We introduce a biocompatible CO-releasing molecule (CORM, A) as Mn(I) tricarbonyl complex with the ligand 5-(dimethylamino)-N, N-bis(pyridin-2-ylmethyl) naphthalene-1-sulfonamide (L). CO release is chaperoned by turn-on fluorescence and can be triggered by light (405 nm) as well as with hydrogen peroxide in aqueous phosphate buffer. Complex A behaves as a logic "OR" gate via co-registering the inputs of irradiation (light) and peroxide (matter) into the concomitant outputs fluorescence (light) and CO (matter). Cell viability assays confirm the low toxicity of A toward different human cell lines. The CORM has been used to track the inclusion of A into cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.