Time series forecasting using historical data is significantly important nowadays. Many fields such as finance, industries, healthcare, and meteorology use it. Profit analysis using financial data is crucial for any online or offline businesses and companies. It helps understand the sales and the profits and losses made and predict values for the future. For this effective analysis, the statistical methods-Autoregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA models (SARIMA), and deep learning method-Long Short-Term Memory (LSTM) Neural Network model in time series forecasting have been chosen. It has been converted into a stationary dataset for ARIMA, not for SARIMA and LSTM. The fitted models have been built and used to predict profit on test data. After obtaining good accuracies of 93.84% (ARIMA), 94.378% (SARIMA) and 97.01% (LSTM) approximately, forecasts for the next 5 years have been done. Results show that LSTM surpasses both the statistical models in constructing the best model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.