CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
In this work, the applicability and performance of a linear scaling algorithm is investigated for three-dimensional condensed phase systems. A simple but robust approach based on the matrix sign function is employed together with a thresholding matrix multiplication that does not require a prescribed sparsity pattern. Semiempirical methods and density functional theory have been tested. We demonstrate that self-consistent calculations with 1 million atoms are feasible for simple systems. With this approach, the computational cost of the calculation depends strongly on basis set quality. In the current implementation, high quality calculations for dense systems are limited to a few hundred thousand atoms. We report on the sparsities of the involved matrices as obtained at convergence and for intermediate iterations. We investigate how determining the chemical potential impacts the computational cost for very large systems.
AbstractIn this work, the applicability and performance of a linear scaling algorithms is investigated for three dimensional condensed phase systems. A simple but robust approach based on the matrix sign function is employed together with a thresholding matrix multiplication that does not require a prescribed sparsity pattern. Semi-empirical methods and density functional theory have been tested. We demonstrate that self consistent calculations with a million atoms are feasible for simple systems. With this approach the computational cost of the calculation depends strongly on basis set quality. In the current implementation, high quality calculations for dense systems are limited to a few hundred thousand atoms. We report on the sparsities of the involved matrices as obtained at convergence and for intermediate iterations. We investigate on how determining the chemical potential impacts the computational cost for very large systems.
In this article a procedure is derived to obtain a performance gain for molecular dynamics (MD) simulations on existing parallel clusters. Parallel clusters use a wide array of interconnection technologies to connect multiple processors together, often at different speeds, such as multiple processor computers and networking. It is demonstrated how to configure existing programs for MD simulations to efficiently handle collective communication on parallel clusters with processor interconnections of different speeds.
A Car-Parrinello molecular dynamics study was performed for 4,5-dimethyl-2-(N,N-dimethylaminomethyl)phenol, a Mannich base, to investigate the vibrational properties in solution of its intramolecular hydrogen bond. The dynamic behavior of this hydrogen-bonded system was investigated using an explicit solvent model. Addition of a nonpolar solvent permitted inclusion of delicate environmental effects on the strongly anharmonic system which was studied from first principles. Molecular dynamics and a posteriori quantization of the O-H motion were applied to reproduce the vibrational features of the O-H stretching mode. Consistent application of Car-Parrinello dynamics based on the density functional theory with subsequent solution of the vibrational Schrödinger equation for the O-H stretching motion offers an effective method for strongly anharmonic systems, and this is supported by the comparison of the results with experimental spectra. As a further element of the intramolecular hydrogen bond study, the effects of deuteration were taken into account and a successful application of the O-H stretching mode quantization technique to the liquid phase is demonstrated. This provides a valuable computational methodology for investigations incorporating nuclear quantum effects in the liquid phase and enzyme active centers and can be used to investigate numerous systems that are not readily susceptible to experimental analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.