Abstract-A key design constraint of circuits used in handheld devices is the power consumption, mainly due to battery life limitations. Adaptive power management (APM) techniques aim to increase the battery life of such devices by adjusting the supply voltage and operating frequency, and thus the power consumption, according to the workload. Testing for resistive bridging defects in APM-enabled designs raises a number of challenges due to their complex analog behavior. Testing at more than one supply voltage setting can be employed to improve defect coverage in such systems, however, switching between several supply voltage settings has a detrimental impact on the overall cost of test. This paper proposes a multi-Vdd automatic test generation method which delivers 100% resistive bridging defect coverage and also a way of reducing the number of supply voltage settings required during test through test point insertion. The proposed techniques have been experimentally validated using a number of benchmark circuits.
Abstract-The IEEE P1687 (IJTAG) standard proposal aims at providing a standardized interface between the IEEE Standard 1149.1 test access port (TAP) and on-chip embedded test, debug and monitoring logic (instruments), such as scan-chains and temperature sensors. A key feature in P1687 is to include Segment Insertion Bits (SIBs) in the scan-path to allow flexibility both in designing the instrument access network and in scheduling the access to instruments. This paper presents algorithms to compute the overall access time (OAT) for a given P1687 network. The algorithms are based on analysis for flat and hierarchical network architectures, considering two access schedules, i.e., concurrent schedule and sequential schedule. In the analysis, two types of overhead are identified, i.e., network configuration data overhead and JTAG protocol overhead. The algorithms are implemented and employed in a parametric analysis and in experiments on realistic industrial designs.
Abstract-The IEEE P1687 (IJTAG) standard proposal aims at standardizing the access to embedded test and debug logic (instruments) via the JTAG TAP. P1687 specifies a component called Segment Insertion Bit (SIB) which makes it possible to construct a multitude of alternative P1687 instrument access networks for a given set of instruments. Finding the best access network with respect to instrument access time and the number of SIBs is a time-consuming task in the absence of EDA support. This paper is the first to describe a P1687 design automation tool which constructs and optimizes P1687 networks. Our EDA tool, called PACT, considers the concurrent and sequential access schedule types, and is demonstrated in experiments on industrial SOCs, reporting total access time and average access time.
This paper addresses Test Application Time (T AT) reduction under power constraints for corebased 3D Stacked ICs (SICs) connected by Through Silicon Vias (TSVs). Unlike non-stacked chips, where the test flow is well defined by applying the same test schedule both at wafer sort and at package test, the test flow for 3D TSV-SICs is yet undefined. In this paper we present a cost model to find the optimal test flow. For the optimal test flow, we propose test scheduling algorithms that take the particulars of 3D TSV-SICs into account. A key challenge in testing 3D TSV-SICs is to reduce the T AT by co-optimizing the wafer sort and the package test while meeting power constraints. We consider a system of chips with cores that are accessed through an on-chip JTAG infrastructure and propose a test scheduling approach to reduce T AT while considering resource conflicts and meeting the power constraints. Depending on the test schedule, the JTAG interconnect lines that are required can be shared to test several cores. This is taken into account in experiments with an implementation of the proposed scheduling approach. The results show significant savings in T AT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.