Green tea (Camellia sinensis) has high level of flavonoids which are proven to have anti-inflammatory activity. Effect of flavonoids can be enhanced by nano-chitosan capsulation as drug carrier. Chitosan is polysaccharide derived from crustacean shells that mostly used as matrix of various drugs and plant extracts. The aim of this study was to determine the effectivity of flavonoids in green tea extract in nanochitosan capsulation towards the number of fibroblasts on proliferative phase of gingival wound healing process. Green tea was extracted, encapsulated with nano-chitosan and then made into gel. Gingiva labial of 24 male white 3-month-old Wistar rats were wounded by punch biopsy (2 mm diameter), then were treated two times a day, and were divided randomly into four groups of topical gel applications: green tea extract gel encapsulated nano-chitosan, green tea extract gel, base gel as negative control, and NSAIDs gel as positive control, starting at 0 day until 7th day. At 5th and 7th day, three rats from each group were decapitated and the mandibular gingiva was taken in order to make histology slides with hematoxylin eosin staining. Under microscope, the number of fibroblasts were examined. The data were analysed using ANOVA test with 95% confidence level. The results showed that the number of fibroblasts on proliferative phase was significantly higher than control negative (p < 0.05) and has no significant differences (p > 0.05) with control positive. In conclusion, topical application of green tea extract gel encapsulated nano-chitosan was effective to accelerate rats gingival wound healing process by increasing the fibroblasts.
Background: Azo compounds, containing naphthol and diazonium salts, are synthetic dyes widely used in the batik industry. Azo compounds are considered toxic when they are exposed to human tissue. The purpose of this study was to analyze buccal cell DNA exposed to azo compounds in batik workers. Methods: A cross-sectional study involving 20 male subjects divided into two groups (n=10 group), namely azo-exposed and non-exposed (control group). Inclusion criteria were batik workers of the colouring division who have been exposed to azo for at least 5 years. Buccal cells were taken using cytobrush then DNA were isolated from buccal cell. DNA isolation was done by buccal DNA kit, while the purity and concentration of the DNA was determined using spectrophotometer and electrophoresis. Results: The azo-exposed group revealed higher purity DNA than those in the control group. The purity of the DNA in the azo-exposed group and control group was 0.61±0.93 and 0.21±0.09, respectively, while the concentration of DNA was of 59.02 and 19.35 ng/UL, respectively. The ratio at 260/280 nm was 1.84-1.94 (azo-exposed) and 1.85-1.92 (control). Principal component analysis using the first principle component (PC1) and second principle component (PC2) could successfully classify subjects in the control and azo-exposed groups. Conclusion: Characteristics of DNA could be used as an indication of exposure to azo compounds in workers of batik industries.
Background: Azo compounds, containing naphthol and diazonium salts, are synthetic dyes widely used in the batik industry. Azo compounds are considered toxic when they are exposed to human tissue. The purpose of this study was to analyze buccal cell DNA exposed to azo compounds in batik workers. Methods: A cross-sectional study involving 20 male subjects divided into two groups (n=10 group), namely azo-exposed and non-exposed (control group). Inclusion criteria were batik workers of the colouring division who have been exposed to azo for at least 5 years. Buccal cells were taken using cytobrush then DNA were isolated from buccal cell. DNA isolation was done by buccal DNA kit, while the purity and concentration of the DNA was determined using spectrophotometer and electrophoresis. Results: The azo-exposed group revealed higher purity DNA than those in the control group. The purity of the DNA in the azo-exposed group and control group was 0.61±0.93 and 0.21±0.09, respectively, while the concentration of DNA was of 59.02 and 19.35 ng/UL, respectively. The ratio at 260/280 nm was 1.84-1.94 (azo-exposed) and 1.85-1.92 (control). Principal component analysis using the first principle component (PC1) and second principle component (PC2) could successfully classify subjects in the control and azo-exposed groups. Conclusion: Characteristics of DNA could be used as an indication of exposure to azo compounds in workers of batik industries.
Periodontal disease has a high prevalence in Indonesia. Gingival disease is a periodontal disease if it is severe, requires surgical therapy called a gingivectomy. Surgical periodontal procedures lead to a gingival wound that is usually treatedusing a periodontal pack. Periodontal pack has no curative property in general but assists in a wound healing process by protecting tissues. Neutrophils are inflammatory cells that act as a host’s first defense against infectious pathogens and they are important in wound healing. Wound healing can be accelerated by apitoxin gel from honeybee Apis mellifera species. The aim of this study was to determine the effectiveness of apitoxin gel on neutrophil count on gingival woundhealing process. Medical bee venom powder (Umea, Sweden) was mixed with double-distilled water to prepare a concentration of 0.01% bee venom. The solution was mixed with 10% propylene glycol, 0.01% methylparaben, and3% CMC-sodium. Thirty six gingiva of 3 month-old male Wistar rats (weighing 200-250 gram) were injured using punch biopsy (3 mm in diameter). They were treated in 4 groups: apitoxin gel, apitoxin gel with a periodontal pack, NSAIDsFlamar® gel with periodontal pack, and a periodontal pack. Three Wistar rats from each group were euthanized and their jaws were taken after 48 hours treatment to make histology slides with Hematoxylin Eosin (HE) staining. Neutrophil counts were observed. The data were analyzed using Anova test with 95% confidence level. The results showed there were significan defferebces among 4 groups (p<0.05). The highest neutrophil count on the 2nd day was found in the apitoxin gel induced the 2 day of gingival wound healing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.