Complex networks are studied across many fields of science. To uncover their structural design principles, we defined "network motifs," patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.
Transcription regulation networks control the expression of genes. The transcription networks of well-studied microorganisms appear to be made up of a small set of recurring regulation patterns, called network motifs. The same network motifs have recently been found in diverse organisms from bacteria to humans, suggesting that they serve as basic building blocks of transcription networks. Here I review network motifs and their functions, with an emphasis on experimental studies. Network motifs in other biological networks are also mentioned, including signalling and neuronal networks.
Little is known about the design principles 1-10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2,11,12 , however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams 1-10,13 , we sought to break down such networks into basic building blocks 2 . We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli 3,6 . We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.We compiled a data set of direct transcriptional interactions between transcription factors and the operons they regulate (an operon is a group of contiguous genes that are transcribed into a single mRNA molecule). This database contains 577 interactions and 424 operons (involving 116 transcription factors); it was formed on the basis of on an existing database (RegulonDB) 3,14 . We enhanced RegulonDB by an extensive literature search, adding 35 new transcription factors, including alternative σ-factors (subunits of RNA polymerase that confer recognition of specific promoter sequences). The data set consists of established interactions in which a transcription factor directly binds a regulatory site.The transcriptional network can be represented as a directed graph, in which each node represents an operon and edges represent direct transcriptional interactions. Each edge is directed
Oligonucleotide arrays can provide a broad picture of the state of the cell, by monitoring the expression level of thousands of genes at the same time. It is of interest to develop techniques for extracting useful information from the resulting data sets. Here we report the application of a two-way clustering method for analyzing a data set consisting of the expression patterns of different cell types. Gene expression in 40 tumor and 22 normal colon tissue samples was analyzed with an Affymetrix oligonucleotide array complementary to more than 6,500 human genes. An efficient twoway clustering algorithm was applied to both the genes and the tissues, revealing broad coherent patterns that suggest a high degree of organization underlying gene expression in these tissues. Coregulated families of genes clustered together, as demonstrated for the ribosomal proteins. Clustering also separated cancerous from noncancerous tissue and cell lines from in vivo tissues on the basis of subtle distributed patterns of genes even when expression of individual genes varied only slightly between the tissues. Two-way clustering thus may be of use both in classifying genes into functional groups and in classifying tissues based on gene expression.
Engineered systems are often built of recurring circuit modules that carry out key functions. Transcription networks that regulate the responses of living cells were recently found to obey similar principles: they contain several biochemical wiring patterns, termed network motifs, which recur throughout the network. One of these motifs is the feed-forward loop (FFL). The FFL, a three-gene pattern, is composed of two input transcription factors, one of which regulates the other, both jointly regulating a target gene. The FFL has eight possible structural types, because each of the three interactions in the FFL can be activating or repressing. Here, we theoretically analyze the functions of these eight structural types. We find that four of the FFL types, termed incoherent FFLs, act as sign-sensitive accelerators: they speed up the response time of the target gene expression following stimulus steps in one direction (e.g., off to on) but not in the other direction (on to off). The other four types, coherent FFLs, act as sign-sensitive delays. We find that some FFL types appear in transcription network databases much more frequently than others. In some cases, the rare FFL types have reduced functionality (responding to only one of their two input stimuli), which may partially explain why they are selected against. Additional features, such as pulse generation and cooperativity, are discussed. This study defines the function of one of the most significant recurring circuit elements in transcription networks. C ells contain networks of biochemical transcription interactions. These networks have evolved to perform informationprocessing functions (1, 2). The inputs to the network, such as external nutrients and stresses, affect the activity of transcription factor proteins. The transcription factors bind regulatory regions of specific genes and activate or repress their transcription. As a result, cell processes are modulated to fit the environmental conditions. Transcription networks can be described as directed graphs, in which the nodes are genes (3-12). Directed edges represent transcription interactions, where a transcription factor encoded by one gene modulates the transcription rate of the second gene.It is of interest to understand the dynamic behavior of transcription networks (2, 3, 5, 7-10). It was recently found that these networks contain significantly recurring wiring patterns termed ''network motifs' ' (6, 11, 12). Network motifs are patterns that occur in the network far more often than in randomized networks with the same degree sequence (6, 11). The transcription networks of the bacterium Escherichia coli (6, 11) and the yeast Saccharomyces cerevisiae (11,12) were found to contain the same small set of highly significant motifs. The significance of these structures raises the question of whether they have specific information-processing roles in the network. If they do, they might be used to understand the network dynamics in terms of elementary computational building blocks.One of the most significa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.