In mobile robotics, the exploration task consists of navigating through an unknown environment and building a representation of it. The mobile robot community has developed many approaches to solve this problem. These methods are mainly based on two key ideas. The first one is the selection of promising regions to explore and the second is the minimization of a cost function involving the distance traveled by the robots, the time it takes for them to finish the exploration, and others. An option to solve the exploration problem is the use of multiple robots to reduce the time needed for the task and to add fault tolerance to the system. We propose a new method to explore unknown areas, by using a scene partitioning scheme and assigning weights to the frontiers between explored and unknown areas. Energy consumption is always a concern during the exploration, for this reason our method is a distributed algorithm, which helps to reduce the number of communications between robots. By using this approach, we also effectively reduce the time needed to explore unknown regions and the distance traveled by each robot. We performed comparisons of our approach with state-of-the-art methods, obtaining a visible advantage over other works.
In this work, we present a multiclass hand posture classifier useful for human-robot interaction tasks. The proposed system is based exclusively on visual sensors, and it achieves a real-time performance, whilst detecting and recognizing an alphabet of four hand postures. The proposed approach is based on the real-time deformable detector, a boosting trained classifier. We describe a methodology to design the ensemble of real-time deformable detectors (one for each hand posture that can be classified). Given the lack of standard procedures for performance evaluation, we also propose the use of full image evaluation for this purpose. Such an evaluation methodology provides us with a more realistic estimation of the performance of the method. We have measured the performance of the proposed system and compared it to the one obtained by using only the sampled window approach. We present detailed results of such tests using a benchmark dataset. Our results show that the system can operate in real time at about a 10-fps frame rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.