We present a novel solution to the camera pose estimation problem, where rotation and translation of a camera between two views are estimated from matched feature points in the images. The camera pose estimation problem is traditionally solved via algorithms that are based on the essential matrix or the Euclidean homography. With six or more feature points in general positions in the space, essential matrix based algorithms can recover a unique solution. However, such algorithms fail when points are on critical surfaces (e.g., coplanar points) and homography should be used instead. By formulating the problem in quaternions and decoupling the rotation and translation estimation, our proposed algorithm works for all point configurations. Using both simulated and real world images, we compare the estimation accuracy of our algorithm with some of the most commonly used algorithms. Our method is shown to be more robust to noise and outliers. For the benefit of community, we have made the implementation of our algorithm available online and free 1 .
Hyperspectral cameras sample many different spectral bands at each pixel, enabling advanced detection and classification algorithms. However, their limited spatial resolution and the need to measure the camera motion to create hyperspectral images makes them unsuitable for nonsmooth moving platforms such as unmanned aerial vehicles (UAVs). We present a procedure to build hyperspectral images from line sensor data without camera motion information or extraneous sensors. Our approach relies on an accompanying conventional camera to exploit the homographies between images for mosaic construction. We provide experimental results from a low‐altitude UAV, achieving high‐resolution spectroscopy with our system.
In mobile robotics, the exploration task consists of navigating through an unknown environment and building a representation of it. The mobile robot community has developed many approaches to solve this problem. These methods are mainly based on two key ideas. The first one is the selection of promising regions to explore and the second is the minimization of a cost function involving the distance traveled by the robots, the time it takes for them to finish the exploration, and others. An option to solve the exploration problem is the use of multiple robots to reduce the time needed for the task and to add fault tolerance to the system. We propose a new method to explore unknown areas, by using a scene partitioning scheme and assigning weights to the frontiers between explored and unknown areas. Energy consumption is always a concern during the exploration, for this reason our method is a distributed algorithm, which helps to reduce the number of communications between robots. By using this approach, we also effectively reduce the time needed to explore unknown regions and the distance traveled by each robot. We performed comparisons of our approach with state-of-the-art methods, obtaining a visible advantage over other works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.