Malware analysts still need to manually inspect malware samples that are considered suspicious by heuristic rules. They dissect software pieces and look for malware evidence in the code. The increasing number of malicious applications targeting Android devices raises the demand for analyzing them to find where the malcode is triggered when user interacts with them. In this paper a framework to monitor and visualize Android applications’ anomalous function calls is described. Our approach includes platform-independent application instrumentation, introducing hooks in order to trace restricted API functions used at runtime of the application. These function calls are collected at a central server where the application behavior filtering and a visualization take place. This can help Android malware analysts in visually inspecting what the application under study does, easily identifying such malicious functions.
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.
Given the growing amount of industrial data in the 4th industrial revolution, deep learning solutions have become popular for predictive maintenance (PdM) tasks, which involve monitoring assets to anticipate their requirements and optimise maintenance tasks. However, given the large variety of such tasks in the literature, choosing the most suitable architecture for each use case is difficult. This work aims to facilitate this task
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.