Electric drive using dc shunt motor or permanent magnet dc (PMDC) motor as prime mover exhibits bifurcation and chaos. The characteristics of dc shunt and PMDC motors are linear in nature. These motors are controlled by pulse width modulation (PWM) technique with the help of semiconductor switches. These switches are nonlinear element that introduces nonlinear characteristics in the drive. Any nonlinear system can exhibit bifurcation and chaos. dc shunt or PMDC drives show normal behavior with certain range of parameter values. It is also observed that these drive show chaos for significantly large ranges of parameter values. In this paper we present a method for controlling chaos applicable to dc shunt and PMDC drives. The results of numerical investigation are presented.
In this paper, subharmonic and chaotic behavior in current controlled DC drive has been investigated. The effects of variation of some chosen parameters on the qualitative behavior of the system have been studied. To avoid occurrence of chaos we present a method for controlling chaos applicable to DC drives. The results of numerical investigation are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.