Cerium oxide nanoparticles (CNPs), owing to their antioxidant property, have recently emerged as therapeutic candidate for Alzheimer’s disease (AD). However, intravenous CNPs are limited due to their poor physicochemical properties, rapid blood clearance and poor blood–brain penetration. Thus, we developed intranasal CNPs and evaluated its potential in experimental AD. CNPs were synthesized using homogenous precipitation method and optimized through Box–Behnken Design. The formation of CNPs was confirmed by UV spectroscopy and FTIR. The optimized CNP were spherical, small (134.0 ± 3.35 nm), uniform (PDI, 0.158 ± 0.0019) and stable (ZP, −21.8 ± 4.94 mV). The presence of Ce in CNPs was confirmed by energy-dispersive X-ray analysis. Further, the X-ray diffraction spectra revealed that the CNPs were nano-crystalline. The DPPH assay showed that at concentration of 50 µg/mL, the percentage radical scavenging was 95.40 ± 0.006%. Results of the in vivo behavioral studies in the scopolamine-induced Alzheimer rat model showed that intranasal CNPs dose dependently reversed cognitive ability. At dose of 6 mg/kg the morris water maze results (escape latency, path length and dwell time) and passive avoidance results (retention latency) were significantly different from untreated group but not significantly different from positive control group (rivastigmine patch, 13.3 mg/24 h). Further, biochemical estimation showed that intranasal CNP upregulated the levels of SOD and GSH in brain. In conclusion, intranasal CNPs, through its antioxidant effect, could be a prospective therapeutics for the treatment of cognitive impairment in AD.
The current study was aimed to evaluate the effects of guava and papaya leaves extract on the antioxidant profile and their outcomes in the storage stability of shrimp patties. Total of seven treatments were prepared by employing guava leaf extract (GLE) and papaya leaf extract (PLE) including control. Both the extracts were employed in the concentration of 1% and 2% each and in combination as 1:1% and 2:2%, respectively. The shrimp patties were kept in ziplock bags at refrigeration temperature, and further analysis was done after 21 days of storage period with intermittent evaluation interval of 7 days. The antioxidant capability of functional shrimp patties was determined by total phenolic content (TPC), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP). Higher significant values of TPC, DPPH, and FRAP were observed in the functional shrimp patties enriched with GLE2%:PLE2% at start of the experiment. The physicochemical parameters were observed by hunter color, TVBN, TBARS, and peroxide value (POV). Higher significant values of TVBN, TBARS, and peroxide were observed in the control samples as compared to treatment group GLE2%:PLE2%. The bacterial counts were also higher in control samples as compared to the treatment group GLE2%:PLE2%. The sensorial attributes were observed regarding appearance, taste, texture, odor, and overall acceptability. The maximum scores related all parameters were gathered by control group but significantly lower scores were for the group GLE2%:PLE2%. In conclusion, functional shrimp patties enriched with GLE2%:PLE2% showed better antioxidant capacity, stability, and sensory characteristics during storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.