A novel class of isochroman dopamine analogues, 1, originally reported by Abbott Laboratories, had greater than 100-fold selectivity for D1-like vs. D2-like receptors. We synthesized a parallel series of chroman compounds, 2, and showed that repositioning the oxygen in the heterocyclic ring reduced potency and conferred D2-like receptor selectivity to these compounds. In silico modeling supported the hypothesis that the altered pharmacology for 2 was due to potential intramolecular hydrogen bonding between the oxygen in the chroman ring and the meta-hydroxyl of the catechol moiety. This interaction realigns the catechol hydroxyl groups and disrupts key interactions between these ligands and critical serine residues in TM5 of the D1-like receptors. This hypothesis was tested by the synthesis and pharmacological evaluation of a parallel series of carbocyclic compounds, 3. Our results suggest that when the potential for intramolecular hydrogen bonding is removed, D1-like receptor potency and selectivity is restored.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.