This study demonstrates that WAY-100635 is not a "selective" 5-HT1A receptor antagonist, as previously reported, and conclusions drawn from studies that employed WAY-100635 as a selective 5-HT1A antagonist may need to be reevaluated.
Subsequent radioreceptor binding analysis indicated that the drug-induced changes in oligomer formation were not readily explained by alterations in receptor density. These observations support the hypothesis that long-term drug exposure differentially alters A 2A /D 2 receptor oligomerization and provide the first demonstration for the use of BiFC to monitor drugmodulated GPCR oligomerization.
We report the synthesis of trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline hydrochloride 6 and the resolution of its enantiomers. This new compound is an oxygen bioisostere of the potent dopamine D1-selective full agonist dihydrexidine. The initial synthetic approach involved, as a key step, a Suzuki coupling between a chromene triflate and a boronate ester, followed by isoquinoline formation and reduction of the resulting isoquinoline. Subsequently, a more efficient route was developed that involved conjugate addition of an aryl Grignard reagent to a 2-nitrochromene. The title compound possessed high affinity (Ki=20-30 nM) for porcine D1-like receptors in native striatal tissue and full intrinsic activity at cloned human dopamine D1 receptors but had much lower affinity at dopamine D2-like receptors (Ki=3000 nM). The binding and functional properties of this compound illustrate again the utility of constructing dopamine D1 agonist ligands around the beta-phenyldopamine pharmacophore template.
The title compound ([ 3 H]INBMeO) was prepared by an O,O-dimethylation reaction of a t-BOC protected diphenolic precursor using no carrier added tritiated iodomethane in DMF with K 2 CO 3 . Removal of the t-BOC protecting group and purification by HPLC afforded an overall yield of 43%, with a radiochemical purity of 99% and specific activity of 164 Ci/mmol. The new radioligand was suitable for labeling human 5-HT 2A receptors in two heterologous cell lines and had about 20-fold higher affinity than [ 3 H]ketanserin.
A novel class of isochroman dopamine analogues, 1, originally reported by Abbott Laboratories, had greater than 100-fold selectivity for D1-like vs. D2-like receptors. We synthesized a parallel series of chroman compounds, 2, and showed that repositioning the oxygen in the heterocyclic ring reduced potency and conferred D2-like receptor selectivity to these compounds. In silico modeling supported the hypothesis that the altered pharmacology for 2 was due to potential intramolecular hydrogen bonding between the oxygen in the chroman ring and the meta-hydroxyl of the catechol moiety. This interaction realigns the catechol hydroxyl groups and disrupts key interactions between these ligands and critical serine residues in TM5 of the D1-like receptors. This hypothesis was tested by the synthesis and pharmacological evaluation of a parallel series of carbocyclic compounds, 3. Our results suggest that when the potential for intramolecular hydrogen bonding is removed, D1-like receptor potency and selectivity is restored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.