Upper limb robotic rehabilitation devices can collect quantitative data about the user's movements. Identifying relationships between robotic sensor data and manual clinical assessment scores would enable more precise tracking of the time course of recovery after injury and reduce the need for time-consuming manual assessments by skilled personnel. This study used measurements from robotic rehabilitation sessions to predict clinical scores in a traumatic cervical spinal cord injury (SCI) population. A retrospective analysis was conducted on data collected from subjects using the Armeo Spring (Hocoma, AG) in three rehabilitation centers. Fourteen predictive variables were explored, relating to range-of-motion, movement smoothness, and grip ability. Regression models using up to four predictors were developed to describe the following clinical scores: the GRASSP (consisting of four sub-scores), the ARAT, and the SCIM. The resulting adjusted R(2) value was highest for the GRASSP "Quantitative Prehension" component (0.78), and lowest for the GRASSP "Sensibility" component (0.54). In contrast to comparable studies in stroke survivors, movement smoothness was least beneficial for predicting clinical scores in SCI. Prediction of upper-limb clinical scores in SCI is feasible using measurements from a robotic rehabilitation device, without the need for dedicated assessment procedures.
Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness). For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the “Graded and Redefined Assessment of Strength, Sensibility and Prehension” (GRASSP) and the Van Lieshout Test (VLT) for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can serve as a basis for the future development of end-effector and exoskeleton-based robotic assessments.
BackgroundRobotic and non-robotic training devices are increasingly being used in the rehabilitation of upper limb function in subjects with neurological disorders. As well as being used for training such devices can also provide ongoing assessments during the training sessions. Therefore, it is mandatory to understand the reliability and validity of such measurements when used in a clinical setting. The aim of this study was to evaluate the reliability of movement measures as assessed in the Armeo Spring system for the eventual application to the rehabilitation of patients suffering from cervical spinal cord injury (SCI).MethodsReliability (intra- and inter-rater reliability) of the movement workspace (representing multiple ranges of movement) and the influence of varying seating conditions (5 different chair conditions) was assessed in twenty control subjects. In eight patients with cervical SCI the test-retest reliability (tested twice on the same day by the same rater) was assessed as well as a correlation of the movement workspace to retrieve self-care items as scored by the spinal cord independence measure (SCIM 3).ResultsAnalysis of workspace measures in control subjects revealed intra-class correlation coefficients (ICC) ranging from 0.747 to 0.837 for the intra-rater reliability and from 0.661 to 0.855 for the inter-rater reliability. Test-retest analysis in SCI patients showed a similar high reliability with ICC = 0.858. Also the reliability of the movement workspace between different seating conditions was good with ICCs ranging from 0.844 to 0.915. The movement workspace correlated significantly with the SCIM3 self-care items (p < 0.05, rho = 0.72).ConclusionThe upper limb movement workspace measures assessed in the Armeo Spring device revealed fair to good clinical reliability. These findings suggest that measures retrieved from such a training device can be used to monitor changes in upper limb function over time. The correlation between the workspace measures and SCIM3 self-care items indicates that such measures might also be valuable to document the progress of clinical rehabilitation, however further detailed studies are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.