Tail pipe particle emissions of passenger cars, with different engine and aftertreatment technologies, were determined with special focus on diesel engines equipped with a particle filter. The particle number measurements were performed, during transient tests, using a condensation particle counter. The measurement procedure complied with the draft Swiss ordinance, which is based on the findings of the UN/ECE particulate measurement program. In addition, particle mass emissions were measured by the legislated and a modified filter method. The results demonstrate the high efficiency of diesel particle filters (DPFs) in curtailing nonvolatile particle emissions over the entire size range. Higher emissions were observed during short periods of DPF regeneration and immediately afterward, when a soot cake has not yet formed on the filter surface. The gasoline vehicles exhibited higher emissions than the DPF equipped diesel vehicles but with a large variation depending on the technology and driving conditions. Although particle measurements were carried out during DPF regeneration, it was impossible to quantify their contribution to the overall emissions, due to the wide variation in intensity and frequency of regeneration. The numbers counting method demonstrated its clear superiority in sensitivity to the mass measurement. The results strongly suggest the application of the particle number counting to quantify future low tailpipe emissions.
Drastic reduction in particle emissions of diesel-powered vehicles and new findings on the health impact of particles raise the question of a more sensitive measurement procedure. In this paper, 16 different particle mass measurement systems are compared on a diesel heavy-duty engine equipped with a particle filter to investigate their feasibility for particle characterization for future ultra-low concentration levels. The group of instruments comprises mass-related methods (filter methods, laser-induced incandescence, photoacoustic detection, photoelectric charging, combined inertial and mobility sizing, opacity) as well as non-mass-related methods (CPC, diffusion battery, diffusion charger, ELPI, light scattering). The instruments are compared on the basis of repeatability, limit of detection, sensitivity, time resolution and correlation with the regulated gravimetric filter method, and elemental carbon fraction (EC). Several time-resolved methods show good performance and give reliable results. Opacimeters and light scattering, however, reveal shortcomings at these low concentrations. For all time-resolved advanced methods, poor correlation with the regulated filter method is observed, but most of them show good correlation with the EC fraction of the particles. This outcome demonstrates the crucial role of the sampling conditions for measurement methods that do not exclude volatile material from detection. A clear improvement in sensitivity is observed when non-mass-based instruments are applied (e.g., number or surface-related methods). The results reveal that reliable measurement methods exist for future measurement procedures. However, a change in the measurement method will lead to a discontinuity in the inventories, making it difficult to compare the particle emissions from future and past vehicle generations.
The results of an investigation on PM emissions over an extended range of engine technologies are reported in this paper. These included modern Diesel vehicles, a particle trap equipped Diesel vehicle, a port-injected gasoline vehicle and direct injection gasoline vehicles. Various particulate measurement instruments were employed simultaneously, including SMPS, CPC, ELPI, for number and size and the standard gravimetric filter method for mass. Soxhlet extraction was applied to determine the chemical composition. The partlcle emissions showed a wide range in concentration for the different vehicles. The particle concentration of the port-injected gasoline vehicle and the trap-equipped Diesel vehicle were observed at background level. The direct injection gasoline vehicles showed a large variation in particle concentration depending on concept and operation mode but in all tests higher particle emissions in number and mass were observed than the conventional gasoline vehicle, but substantially below the conventional Diesel vehicles. Add !9 my ordgr Order Info View Order
The Dekati mass monitor (DMM; Dekati Ltd., Finland), a relatively new real-time mass measurement instrument, was investigated in this project. In contrast to the existing gravimetric filter method also used as a standard for regulation purposes, this instrument provides second-by-second data on mass concentration in the engine exhaust gas. The principle of the DMM is based on particle charging, inertial and electrical size classification, and electrical detection of aerosol particles. This study focuses on the instrument's practical performance. Details on calibration and the theory of operation will be published elsewhere. The exhaust emissions of two heavy-duty engines complying with the Euro III emission standard were measured on a dynamic engine test bench. We looked atthe particle number and mass emissions of the engines in different transient test cycles and steady-state conditions. The ability to follow transient test cycles and the response times of the DMM were investigated. The aerosol mass concentration measured by the DMM was compared with the mass concentration obtained by the standard gravimetric filter method with Teflon-coated glass fiber filters. The total mass concentration (integral over the whole cycle) measured by the DMM is about 20% higher than that measured by the standard gravimetric filter method. The total mass concentration from the DMM was also compared with the volume concentration calculated from the electrical low-pressure impactor (ELPI) measurements. Correlations were made with other particle measuring systems. The DMM correlates very well with the particulate mass (R2 = 0.95) and exhibits good linearity and repeatability. The response time to a well-defined change in exhaust concentration was observed to be fast and stable. The DMM was able to follow transient test cycles and provides good results on a second-by-second basis. The instrument used in this study was still under development, and there is therefore no complete scientific background reference for the DMM. This study therefore focuses more on the measurements than on the scientific background. The measurements have shown thatthe DMM is an adequate instrument for measuring the mass concentration of engine exhaust, with results comparable to those from the standard gravimetric filter method. In addition, the DMM provides real-time second-by-second data of the mass concentration during transient test cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.