Multi-slice (MS) technology increases the efficacy of CT procedures and offers new promising applications. The expanding use of MSCT, however, may result in an increase in both frequency of procedures and levels of patient exposure. It was, therefore, the aim of this study to gain an overview of MSCT examinations conducted in Germany in 2001. All MSCT facilities were requested to provide information about 14 standard examinations with respect to scan parameters and frequency. Based on this data, dosimetric quantities were estimated using an experimentally validated formalism. Results are compared with those of a previous survey for single-slice (SS) spiral CT scanners. According to the data provided for 39 dual- and 73 quad-slice systems, the average annual number of patients examined at MSCT is markedly higher than that examined at SSCT scanners (5500 vs 3500). The average effective dose to patients was changed from 7.4 mSv at single-slice to 5.5 mSv and 8.1 mSv at dual- and quad-slice scanners, respectively. There is a considerable potential for dose reduction at quad-slice systems by an optimisation of scan protocols and better education of the personnel. To avoid an increase in the collective effective dose from CT procedures, a clear medical justification is required in each case.
Dual Energy CT is feasible without additional dose. There is no significant difference in image noise, while CNR can be doubled with optimized dual energy CT reconstructions. A restriction in collimation is required for dose-neutrality at 140/80 kVp, whereas this is not necessary at 140 Sn/100 kVp. Thus, CT can be performed routinely in Dual Energy mode without additional dose or compromises in image quality.
Dose assessment in computed tomography (CT) is challenging due to the vast variety of CT scanners and imaging protocols in use. In the present study, the accurateness of a theoretical formalism implemented in the PC program CT-EXPO for dose calculation was evaluated by means of phantom measurements. Phantom measurements were performed with four 1-slice, four 4-slice and two 16-slice spiral CT scanners. Firstly, scanner-specific nCTDIw values were measured and compared with the corresponding standard values used for dose calculation. Secondly, effective doses were determined for three CT scans (head, chest and pelvis) performed at each of the ten installations from readings of thermoluminescent dosimeters distributed inside an anthropomorphic Alderson phantom and compared with the corresponding dose values computed with CT-EXPO. Differences between standard and individually measured nCTDIw values were less than 16%. Statistical analysis yielded a highly significant correlation (P < 0.001) between calculated and measured effective doses. The systematic and random uncertainty of the dose values calculated using standard nCTDIw values was about -9 and +/- 11%, respectively. The phantom measurements and model calculations were carried out for a variety of CT scanners and representative scan protocols validate the reliability of the dosimetric formalism considered-at least for patients with a standard body size and a tube voltage of 120 kV selected for the majority of CT scans performed in our study.
The updated dose coefficients provide a valuable tool to easily assess the generic radiation risk of patients undergoing whole-body PET/CT (or PET/MRI) examinations and can be used, amongst others, for protocol optimization.
A combination of prospective triggering with low voltage settings is an effective measure for reducing the ED of coronary CTA to values of 2-4 mSv independent of scanner system. Further dose reduction to nearly 1 mSv can be achieved with high-pitch prospectively triggered coronary CTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.