An ongoing canine distemper epidemic was first detected in Switzerland in the spring of 2009. Compared to previous local canine distemper outbreaks, it was characterized by unusually high morbidity and mortality, rapid spread over the country, and susceptibility of several wild carnivore species. Here, the authors describe the associated pathologic changes and phylogenetic and biological features of a multiple highly virulent canine distemper virus (CDV) strain detected in and/or isolated from red foxes (Vulpes vulpes), Eurasian badgers (Meles meles), stone (Martes foina) and pine (Martes martes) martens, from a Eurasian lynx (Lynx lynx), and a domestic dog. The main lesions included interstitial to bronchointerstitial pneumonia and meningopolioencephalitis, whereas demyelination-the classic presentation of CDV infection-was observed in few cases only. In the brain lesions, viral inclusions were mainly in the nuclei of the neurons. Some significant differences in brain and lung lesions were observed between foxes and mustelids. Swiss CDV isolates shared together with a Hungarian CDV strain detected in 2004. In vitro analysis of the hemagglutinin protein from one of the Swiss CDV strains revealed functional and structural differences from that of the reference strain A75/17, with the Swiss strain showing increased surface expression and binding efficiency to the signaling lymphocyte activation molecule (SLAM). These features might be part of a novel molecular signature, which might have contributed to an increase in virus pathogenicity, partially explaining the high morbidity and mortality, the rapid spread, and the large host spectrum observed in this outbreak.
Amphibian pathogens are of current interest as contributors to the global decline of amphibians. However, compared with chytrid fungi and ranaviruses, herpesviruses have received relatively little attention. Two ranid herpesviruses have been described: namely, Ranid herpesvirus 1 (RHV1) and Ranid herpesvirus 2 (RHV2). This article describes the discovery and partial characterization of a novel virus tentatively named Ranid herpesvirus 3 (RHV3), a candidate member of the genus Batrachovirus in the family Alloherpesviridae. RHV3 infection in wild common frogs (Rana temporaria) was associated with severe multifocal epidermal hyperplasia, dermal edema, a minor inflammatory response, and variable mucous gland degeneration. Intranuclear inclusions were numerous in the affected epidermis together with unique extracellular aggregates of herpesvirus-like particles. The RHV3-associated skin disease has features similar to those of a condition recognized in European frogs for the last 20 years and whose cause has remained elusive. The genome of RHV3 shares most of the features of the Alloherpesviruses. The characterization of this presumptive pathogen may be of value for amphibian conservation and for a better understanding of the biology of Alloherpesviruses.
Abstract. Skin lesions are a frequent manifestation of Leishmania infantum infections in Mediterranean countries. This study demonstrates by real-time reverse transcriptase-polymerase chain reaction the local cytokine response in skin biopsies from Leishmania-infected dogs (n ϭ 10). As controls, we investigated skin biopsies from healthy (n ϭ 10) and fleabite hypersensitive dogs (n ϭ 10). We established a quantitative PCR to determine the parasite burden in biopsies. The objective was to elucidate whether a correlation exists between parasite number, histologic response, and T helper-1 (TH1)/T helper-2 (TH2) cytokine expression in lesional skin of naturally infected dogs. In Leishmania-infected dogs, interleukin-4 (IL-4), tumor necrosis factor ␣ (TNF-␣) and interferon-␥ (IFN-␥) messenger RNA production was significantly higher than controls. Furthermore, dogs with a high Leishmania burden had a significantly higher IL-4 expression, whereas no difference was noted with regard to expression of other cytokines. By comparing the pattern of inflammation and cytokine expression, a clear trend became evident in that levels of IL-4, TNF-␣, and IFN-␥ were elevated in biopsies with a periadnexal nodular pattern and in biopsies where the severity of the periadnexal infiltrate was equal to the perivascular to interstitial infiltrate. Expression of IL-4, IL-13, and TNF-␣ was slightly increased in biopsies where plasma cells prevailed on lymphocytes, whereas expression of IFN-␥ was moderately higher when lymphocytes were predominating. In summary, the present study demonstrates that the local immune response in naturally occurring leishmaniasis includes TH1 as well as TH2 cytokine subsets. Furthermore, respective data suggest that increased expression of the TH2-type cytokine IL-4 is associated with both severe clinical signs and a high parasite burden in the skin lesions.
We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.