Purpose Recently, the configuration of the anterior cruciate ligament (ACL) from its direct femoral insertion to midsubstance was found to be flat. This might have an important impact for anatomical ACL reconstruction. The purpose of this anatomical study was to evaluate the macroscopic appearance of the ACL from femoral to midsubstance.MethodsThe ACL was dissected in 111 human fresh frozen cadaver knees from its femoral insertion to midsubstance, and the shape was described. The anatomical findings were documented on digital photographs and on video. Thirty knees were sent for computed tomography (CT), magnetic resonance imaging (MRI) and histology of the femoral ACL insertion.ResultsTwo millimetres from its direct femoral insertion, the ACL fibres formed a flat ribbon in all dissected knees without a clear separation between AM and PL bundles. The ribbon was in exact continuity of the posterior femoral cortex. The width of the ribbon was between 11.43 and 16.18 mm and the thickness of the ACL was only 2.54–3.38 mm. 3D CT, MRI and the histological examination confirmed above findings.ConclusionThis is a detailed anatomical study describing the ribbon-like structure of the ACL from its femoral insertion to midsubstance. A key point was to carefully remove the surface fibrous membrane of the ACL. A total of 2–3 mm from its bony femoral insertion, the ACL formed a flat ribbon without a clear separation between AM and PL bundles. The ribbon was in exact continuity of the posterior femoral cortex. The findings of a flat ligament may change the future approach to femoral ACL footprint and midsubstance ACL reconstruction and to graft selection.Electronic supplementary materialThe online version of this article (doi:10.1007/s00167-014-3146-7) contains supplementary material, which is available to authorized users.
Purpose Graft choice in primary anterior cruciate ligament (ACL) reconstruction remains controversial. The use of allograft has risen exponentially in recent years with the attraction of absent donor site morbidity, reduced surgical time and reliable graft size. However, the published evidence examining their clinical effectiveness over autograft tendons has been unclear. The aim of this paper is to provide a current review of the clinical evidence available to help guide surgeons through the decision-making process for the use of allografts in primary ACL reconstruction. Methods The literature in relation to allograft healing, storage, sterilisation, differences in surgical technique and rehabilitation have been reviewed in addition to recent comparative studies and all clinical systematic reviews and meta-analyses. Results Early reviews have indicated a higher risk of failure with allografts due to association with irradiation for sterilisation and where rehabilitation programs and post-operative loading may ignore the slower incorporation of allografts. More recent analysis indicates a similar low failure rate for allograft and autograft methods of reconstruction when using non-irradiated allografts that have not undergone chemically processing and where rehabilitation has been slower. However, inferior outcomes with allografts have been reported in young (< 25 years) highly active patients, and also when irradiated or chemically processed grafts are used. Conclusion When considering use of allografts in primary ACL reconstruction, use of irradiation, chemical processing and rehabilitation programs suited to autograft are important negative factors. Allografts, when used for primary ACL reconstruction, should be fresh frozen and non-irradiated. Quantification of the risk of use of allograft in the young requires further evaluation. Levels of evidence III. Keywords Anterior cruciate ligament reconstruction • Allografts • ACL • Graft choice • Decision making • AutograftsThis work performed as part of the ESSKA Arthroscopy Committee.
This paper focuses on the anatomical attachment of the medial meniscus. Detailed anatomical dissections have been performed and illustrated. Five zones can be distinguished in regard to the meniscus attachments anatomy: zone 1 (of the anterior root), zone 2 (anteromedial zone), zone 3 (the medial zone), zone 4 (the posterior zone) and the zone 5 (of the posterior root). The understanding of the meniscal anatomy is especially crucial for meniscus repair but also for correct fixation of the anterior and posterior horn of the medial meniscus.
Anterior cruciate ligament (ACL) reconstruction is commonly performed and has been for many years. Despite this, the technical details related to ACL anatomy, such as tunnel placement, are still a topic for debate. In this paper, we introduce the flat ribbon concept of the anatomy of the ACL, and its relevance to clinical practice. Cite this article: Bone Joint J 2016;98-B:1020-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.