Laccase production by solid state fermentation (SSF) using an indigenously isolated litter dwelling fungus Fusarium incarnatum LD-3 was optimized. Fourteen medium components were screened by the initial screening method of Plackett-Burman. Each of the components was screened on the basis of 'p' (probability value) which was above 95% confidence level. Ortho-dianisidine, thiamine HCl and CuSO(4) . 5 H(2)O were identified as significant components for laccase production. The Central Composite Design response surface methodology was then applied to further optimize the laccase production. The optimal concentration of these three medium components for higher laccase production were (g/l): CuSO(4) . 5 H(2)O, 0.01; thiamine HCl, 0.0136 and ortho-dianisidine, 0.388 mM served as an inducer. Wheat straw, 5.0 g was used as a solid substrate. Using this statistical optimization method the laccase production was found to increase from 40 U/g to 650 U/g of wheat straw, which was sixteen times higher than non optimized medium. This is the first report on statistical optimization of laccase production from Fusarium incarnatum LD-3.
Enzymes in aqueous environment usually deal with purified enzyme preparations isolated from living matter which does not mimic real catalytic properties in vivo. Interaction of enzymes in nature takes place with different surfaces composed from lipid membranes or they get incorporated into biomembranes. Although Water is not a dominating component in the cytoplasm but plays a structural role by participating in the formation of biocatalytic complexes like glycoproteins. Water is needed to keep biocatalyst in active confirmation and hence plays very crucial role in biocatalytic reactions, activity and stability so that it can be used for various applications. This review focuses on composition, preparation properties and parameters which influence enzymes in reverse micelles and application of micellar enzymology to study protein chemistry, shifting equilibrium of various reactions, to recover various products by partition chromatography and bioremediation of chlorophenolic environmental pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.