SUMMARYThe cellular response to the Drosophila BMP 2/4-like ligand Decapentaplegic (DPP) serves as one of the best-studied models for understanding the long-range control of tissue growth and pattern formation during animal development. Nevertheless, fundamental questions remain unanswered regarding extracellular regulation of the ligand itself, as well as the nature of the downstream transcriptional response to BMP pathway activation. Here, we report the identification of larval translucida (ltl), a novel target of BMP activity in Drosophila. Both gain-and loss-of-function analyses implicate LTL, a leucine-rich repeat protein, in the regulation of wing growth and vein patterning. At the molecular level, we demonstrate that LTL is a secreted protein that antagonizes BMP-dependent MAD phosphorylation, indicating that it regulates DPP/BMP signaling at or above the level of ligand-receptor interactions. Furthermore, based on genetic interactions with the DPP-binding protein Crossveinless 2 and biochemical interactions with the glypican Dally-like, we propose that LTL acts in the extracellular space where it completes a novel auto-regulatory loop that modulates BMP activity.
RNA interference (RNAi) refers to the process of post-transcriptional silencing of cellular mRNA by the application of double-stranded RNA (dsRNA). RNAi strategies have been widely employed to regulate gene expression in plants and animals including insects. With the availability of the full genome sequences of major vector mosquitoes, RNAi has been increasingly used to conduct genetic studies of human pathogens in mosquito vectors and to study the evolution of insecticide resistance in mosquitoes. This review summarizes the recent progress in our understanding of mosquito-pathogen interactions using RNAi and various methods of dsRNA delivery in mosquitoes at different stages. We also discuss potential applications of this technology to develop novel tools for vector control.
Screen identifies genes that affect tumor behavior in a wide variety of ways A functionally validated network of invasionsuppressor genes was generated
Loss of cohesin complex function can promote individual or collective cell invasionThe fly pupal notum is an excellent in vivo system to study tumor progression
Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.