Large-scale implementation of electrochemical hydrogen production requires several fundamental issues to be solved, including understanding the mechanism and developing inexpensive electrocatalysts that work well at high current densities. Here we address these challenges by exploring the roles of morphology and surface chemistry, and develop inexpensive and efficient electrocatalysts for hydrogen evolution. Three model electrocatalysts are flat platinum foil, molybdenum disulfide microspheres, and molybdenum disulfide microspheres modified by molybdenum carbide nanoparticles. The last catalyst is highly active for hydrogen evolution independent of pH, with low overpotentials of 227 mV in acidic medium and 220 mV in alkaline medium at a high current density of 1000 mA cm−2, because of enhanced transfer of mass (reactants and hydrogen bubbles) and fast reaction kinetics due to surface oxygen groups formed on molybdenum carbide during hydrogen evolution. Our work may guide rational design of electrocatalysts that work well at high current densities.
Atomically thin 2D materials have received intense interest both scientifically and technologically. Bismuth oxyselenide (Bi 2 O 2 Se) is a semiconducting 2D material with high electron mobility and good stability, making it promising for high-performance electronics and optoelectronics. Here, an ambient-pressure vapor-solid (VS) deposition approach for the growth of millimeter-size 2D Bi 2 O 2 Se single crystal domains with thicknesses down to one monolayer is reported. The VS-grown 2D Bi 2 O 2 Se has good crystalline quality, chemical uniformity, and stoichiometry. Field-effect transistors (FETs) are fabricated using this material and they show a small contact resistivity of 55.2 Ω cm measured by a transfer line method. Upon light irradiation, a phototransistor based on the Bi 2 O 2 Se FETs exhibits a maximum responsivity of 22 100 AW −1 , which is a record among currently reported 2D semiconductors and approximately two orders of magnitude higher than monolayer MoS 2 . The Bi 2 O 2 Se phototransistor shows a gate tunable photodetectivity up to 3.4 × 10 15 Jones and an on/off ratio up to ≈10 9 , both of which are much higher than phototransistors based on other 2D materials reported so far. The results of this study indicate a method to grow large 2D Bi 2 O 2 Se single crystals that have great potential for use in optoelectronic applications.
Large scale implementation of electrochemical water splitting for hydrogen evolution requires cheap and efficient catalysts to replace expensive platinum. Molybdenum disulfide is one of the most promising alternative catalysts but its intrinsic activity is still inferior to platinum. There is therefore a need to explore new active site origins in molybdenum disulfide with ultrafast reaction kinetics and to understand their mechanisms. Here, we report a universal cold hydrogen plasma reduction method for synthesizing different single atoms sitting on two-dimensional monolayers. In case of molybdenum disulfide, we design and identify a new type of active site, i.e., unsaturated Mo single atoms on cogenetic monolayer molybdenum disulfide. The catalyst shows exceptional intrinsic activity with a Tafel slope of 35.1 mV dec −1 and a turnover frequency of ~10 3 s-1 at 100 mV, based on single flake microcell measurements. Theoretical studies indicate that coordinately unsaturated Mo single atoms sitting on molybdenum disulfide increase the bond strength between adsorbed hydrogen atoms and the substrates through hybridization, leading to fast hydrogen adsorption/desorption kinetics and superior hydrogen evolution activity. This work shines fresh light on preparing highly-efficient electrocatalysts for water splitting and other electrochemical processes, as well as provides a general method to synthesize single atoms on two-dimensional monolayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.