In recent years, the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits. This in turn has helped in improving the quality and production of vegetables and fruits. Citrus fruits are well known for their taste and nutritional values. They are one of the natural and well known sources of vitamin C and planted worldwide. There are several diseases which severely affect the quality and yield of citrus fruits. In this paper, a new deep learning based technique is proposed for citrus disease classification. Two different pre-trained deep learning models have been used in this work. To increase the size of the citrus dataset used in this paper, image augmentation techniques are used. Moreover, to improve the visual quality of images, hybrid contrast stretching has been adopted. In addition, transfer learning is used to retrain the pre-trained models and the feature set is enriched by using feature fusion. The fused feature set is optimized using a meta-heuristic algorithm, the Whale Optimization Algorithm (WOA). The selected features are used for the classification of six different diseases of citrus plants. The proposed technique attains a classification accuracy of 95.7% with superior results when compared with recent techniques.
Human action recognition (HAR) is an essential but challenging task for observing human movements. This problem encompasses the observations of variations in human movement and activity identification by machine learning algorithms. This article addresses the challenges in activity recognition by implementing and experimenting an intelligent segmentation, features reduction and selection framework. A novel approach has been introduced for the fusion of segmented frames and multi-level features of interests are extracted. An entropy-skewness based features reduction technique has been implemented and the reduced features are converted into a codebook by serial based fusion. A custom made genetic algorithm is implemented on the constructed features codebook in order to select the strong and wellknown features. The features are exploited by a multi-class SVM for action identification. Comprehensive experimental results are undertaken on four action datasets, namely, Weizmann, KTH, Muhavi, and WVU multi-view. We achieved the recognition rate of 96.80%, 100%, 100%, and 100% respectively. Analysis reveals that the proposed action recognition approach is efficient and well accurate as compare to existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.