Explainable Artificial Intelligence is a key component of artificially intelligent systems that aim to explain the classification results. The classification results explanation is essential for automatic disease diagnosis in healthcare. The human respiration system is badly affected by different chest pulmonary diseases. Automatic classification and explanation can be used to detect these lung diseases. In this paper, we introduced a CNN-based transfer learning-based approach for automatically explaining pulmonary diseases, i.e., edema, tuberculosis, nodules, and pneumonia from chest radiographs. Among these pulmonary diseases, pneumonia, which COVID-19 causes, is deadly; therefore, radiographs of COVID-19 are used for the explanation task. We used the ResNet50 neural network and trained the network on extensive training with the COVID-CT dataset and the COVIDNet dataset. The interpretable model LIME is used for the explanation of classification results. Lime highlights the input image’s important features for generating the classification result. We evaluated the explanation using radiologists’ highlighted images and identified that our model highlights and explains the same regions. We achieved improved classification results with our fine-tuned model with an accuracy of 93% and 97%, respectively. The analysis of our results indicates that this research not only improves the classification results but also provides an explanation of pulmonary diseases with advanced deep-learning methods. This research would assist radiologists with automatic disease detection and explanations, which are used to make clinical decisions and assist in diagnosing and treating pulmonary diseases in the early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.