Indonesia is one of the countries where dengue infection is prevalent. In this study we measure the prevalence and distribution of dengue virus (DENV) DENV-infected Aedes aegypti in Yogyakarta City, Indonesia, during the wet season when high dengue transmission period occurred, as baseline data before implementation of a Wolbachia-infected Aedes aegypti trial for dengue control. We applied One-Step Multiplex Real Time PCR (RT-PCR) for the type-specific-detection of dengue viruses in field-caught adult Aedes aegypti mosquitoes. In a prospective field study conducted from December 2015 to May 2016, adult female Aedes aegypti were caught from selected areas in Yogyakarta City, and then screened by using RT-PCR. During the survey period, 36 (0.12%) mosquitoes from amongst 29,252 female mosquitoes were positive for a DENV type. In total, 22.20% of dengue-positive mosquitoes were DENV-1, 25% were DENV-2, 17% were DENV-3, but none were positive for DENV-4. This study has provided dengue virus infection prevalence in field-caught Aedes aegypti and its circulating serotype in Yogyakarta City before deployment of Wolbachia-infected Aedes aegypti.
Dengue prevention efforts are limited to the control strategies of its vector and the management of breeding sites. New alternatives for dengue vector control that are sustainable and more environmentally friendly are needed to complement the government’s current efforts. Research on Wolbachia-infected Aedes aegypti Linnaeus mosquitoes as an alternative biocontrol strategy has been performed in Yogyakarta City. However, one of the concerns of the community members and stakeholders about this technology is the safety aspect regarding the transmission of Wolbachia to other species and the possibility that humans will contract Wolbachia. This study aimed to address these concerns, namely to find out whether horizontal transmission of Wolbachia occurred from A. aegypti that were released to other species and whether residents living in the released areas were infected with Wolbachia. The research was conducted in Dusun Nogotirto and Dusun Kronggahan (Sleman Regency), as well as in Dusun Jomblangan and Dusun Singosaren (Bantul Regency), Yogyakarta Special Province. Wolbachia qPCR screening using the target gene WD0513 was performed on 922 Culex quinquefasciatus Say and 331 Aedes albopictus (Skuse). ELISA test was carried out on 190 pairs of plasma samples, namely the sample before the Wolbachia frequency was established (still <80%) and the sample after it was established (>80%). The results showed no evidence of Wolbachia transfer from Wolbachia-infected A. aegypti to other mosquito species coexisting in the same habitat or to humans. This study corroborates the safety evidence of Wolbachia-infected A. aegypti technology as an alternative to control dengue virus transmission
Most of the cucurbits diseases inThe viral particles could joint each other to bend a new form. Two viral particles were able to joint and formed an angle. Moreover, some of viral particles could joint and form a longer viral particle (800-1100 nm), two to four times longer than CGMMV particle, but the both diameter of the virus are similar. These characteristics indicate that the viral particle is a novel virus, different from CGMMV or other Tobamovirus members.
Abstract. Rovik A, Daniwijaya EW, Supriyati E, Rahayu A, Kumalawati DA, Saraswati U, Handayaningsih AE, Rachman MP, Oktriani R, Kurniasari I, Candrasari DS, Nurhayati I, Sholeh R, Arianto B, Tantowijoyo W, Ahmad RA, Utarini A, Arguni E. 2022. Wolbachia genetic similarity in different insect host species: Drosophila melanogaster and Yogyakarta’s (Indonesia) Aedes aegypti as a novel host. Biodiversitas 23: 2321-2328. Wolbachia naturally presents in a large number of insects and other arthropod species. The Wolbachia strain wMel from Drosophila melanogaster has been stably transinfected into Aedes aegypti where it stops the mosquito host from being infected with medically important arbovirus like dengue. Consequently, Ae. aegypti infected with wMel have been released in Indonesia as a public health intervention against dengue. This study genetically compared wMel from Yogya field-caught D. melanogaster and the wMel in stably transfected Ae. aegypti used for field releases in Yogyakarta, Indonesia. The genetic similarity between wMel Wolbachia was evaluated by sequencing of Wolbachia surface protein (wsp) gene and some polymorphic genomic regions of insertion sites (IS) and variable number tandem repeats (VNTR) loci. The sequence of the Wolbachia surface protein (wsp) gene was 100% identical between hosts. There is no insertion sequence among specimens. The insertion sequence IS-WD1310 was identical between wMel from both hosts and among other strains, as well as the IS-WD516/7. The VNTR-141 period was identical within wMel from both hosts and among other strains, the VNTR-105 as well. Wolbachia Yogya field-caught D. melanogaster and Wolbachia strain wMel present in Ae. aegypti used for bio-control of dengue were genetically identical. These findings provide beneficial understanding to answer the public attention on safety issues, especially on the genetic similarity between Wolbachia strain in the natural and transfected hosts of this novel technology for dengue control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.