Hydroxyapatite (HAP: Ca 10 (PO 4) 6 (OH) 2) is extensively used in biomedical field because of its biocompatibility, osteoconductivity and non-toxicity properties. However, HAP exhibits poor mechanical strength and bacterial restriction behavior. To overcome these drawbacks, various metal ions such as Ag + , Zn 2+ , Cu 2+ , Ti 4+ and Ce 4+/3+ are incorporated in HAP matrix to increase the mechanical and biological properties. Among these, Cerium (Ce) is selected as antibacterial agent due to its high thermal stability and its applications in dental fillings, bone healing and catheters. Fe 3 O 4 nanoparticles were used in hyperthermia treatment, magnetic fluid recordings and catalysis. In this present study, we have synthesized nanocomposites consisting of 1.25% Ce doped HAP with various concentrations of Fe 3 O 4 NPs as 90:10 (C-1), 70:30 (C-2) and 50:50 wt% (C-3) using ball milling technique. The obtained Ce@HAP-Fe 3 O 4 nanocomposites were characterized by ATR-FTIR, XRD, VSM, SEM-EDAX and TEM analysis. Further, the fabricated Ce@HAP-Fe 3 O 4 nanocomposites were tested for its antibacterial activity towards Staphylococcus aureus (S. aureus) and Escherichia coli (E.coli), where C-3 composites exhibit the excellent pathogen inhibition towards E.coli. In addition, the cytotoxicity evaluation on C-3 nanocomposites by in vitro biocompatibility study using MG-63 cells shows the prominent viable cell enhancement up to 400µg/mL concentrations.
The objective of this study is to evaluate the biocompatibility of composite powder consisting of silica and titania (SiO-TiO) for biomedical applications. The advancement of nanoscience and nanotechnology encourages researchers to actively participate in reinvention of existing materials with improved physical, chemical and biological properties. Hence, a composite/hybrid material has given birth of new materials with intriguing properties. In the present investigation, SiO-TiO composite powder was synthesised by sol-gel method and the prepared nanocomposite was characterised for its phase purity, functional groups, surface topography by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy. Furthermore, to understand the adverse effects of composite, biocompatibility test was analysed by cell culture method using MG63 osteoblast cell lines as a basic screening method. From the results, it was observed that typical Si-O-Ti peaks in FT-IR confirms the formation of composite and the crystallinity of the composite powder was analysed by XRD analysis. Further in vitro biocompatibility and acridine orange results have indicated better biocompatibility at different concentrations on osteoblast cell lines. On the basis of these observations, we envision that the prepared silica-titania nanocomposite is an intriguing biomaterial for better biomedical applications.
Structural features of apatites make them one of the most promising candidates for bone tissue regenerative applications. The unique structure and availability of mobile Metal ion as well as other components help interaction with biological fluids and can promote as well as stimulate bone regeneration with correct components. The present study focusses on Strontium phosphosilicate, an apatite analogue to Calcium phosphate-based HAP only loaded with better composition replacing Calcium with stimulatory Strontium and co-existent Silicate alongside phosphate both known to stimulate osteogenesis. Bulk particles were synthesized as powders with Acidic medium as well as the Basic medium of reaction mixture via Sol-Gel and Coprecipitation techniques respectively and phase formation was studied with respect to temperature further detailed by TGA-DSC studies. Secondary phases were also indexed based on which Acidic medium samples sintered at 800 C were comparatively better from the Basic medium on account of the presence of silicate phase forming agglomerated Strontium phosphosilicate. Hemolysis assay and MG-63 based cytotoxicity assay were carried out to study biocompatibility and antibacterial properties were also elucidated in Gram-positive and Gram-negative bacteria. Apatite seeding and bone mineralization studies were carried out with Simulated body fluid and characterized structurally and morphologically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.