Imperishable research work was done on females visiting high-altitude (HA) areas for recreational activities or job purposes as well as on female HA natives. Hypoxia at HA is an unavoidable condition that affects the determinants of female reproductive functions like, the age of menarche and menopause, whole reproductive span, hormone synthesis, and fertility. This review will emphasize whether HA hypoxia is a threat to women: residents or visitors by analyzing these proximate determinants. Delayed menarcheal and advanced menopausal age was found to shorten the reproductive span in some HA populations, whereas in some cases, menstrual cycle was also reported to be irregular. In addition, the completed fertility rate (CFR) was increased when people migrated to lower altitude. Altered stress hormones and reproductive hormones were observed in sea-level females exposed to HA. Oxidative stress (OS) at HA was also reviewed to explain the probable reasons for the observed changes in these determinants because disturbed redox homeostasis may be a connecting link, affecting the reproductive functions. In conclusion, HA hypoxia plays a crucial role on various determinants of female reproductive health and this review will be helpful for more precise study along with the probable underlying mechanisms responsible for the changes in female reproductive functions at HA.
The underlying mechanism regulating hypoxia induced alteration in female steroid hormones is first time explored in this study. To understand the mechanistic approach, female Sprague- Dawley rats were exposed to acute and chronic hypobaric hypoxia (282 mm-Hg, ~7620 m, 6 hours, 3 and 7 days). Estrous cycle, body weight, plasma progesterone and estradiol levels, morphology, histology and two key steroidogenic enzymes: 3ß hydroxysteroid dehydrogenase (HSD) and 17ß HSD activity of ovary and adrenal gland were studied. A persistent diestrous phase and a significant decrease in body weight were found in chronic hypoxia groups. Histological study suggested degenerative changes in ovarian corpus luteum of 7 days chronic hypobaric hypoxia (7CHH) group and a declined percentage of adrenocortical cells in 3 days chronic hypobaric hypoxia (3CHH) and 7CHH groups. Plasma estradiol level was unaltered, but progesterone level was decreased significantly in all hypoxic groups. Ovarian 3ß HSD activity was decreased significantly with increasing days of hypoxic treatment along with a significantly low adrenal 3ß HSD activity in 7CHH. In conclusion, hypobaric hypoxia causes a state of low circulatory progesterone level in females likely due to the degenerative changes in the female ovarian and adrenal tissues together with low steroidogenic 3ß HSD enzyme activity.
In emergencies/war like situations, rapid deployment of army personnel into high altitude occurs without proper acclimatisation. Rapid movement of unacclimatised soldiers to high altitude may have deleterious effects on the operational capabilities coupled with incidences of acute mountain sickness (AMS). Altitude acclimatisation is the only solution to avoid AMS. Use of pharmacological intervention for prevention of AMS is a common practice. The use of intermittent hypoxic exposure (IHE) is an alternative approach for altitude acclimatisation as it reduces occurrence and severity of AMS. The use of intermittent normobaric hypoxia exposure at sea level on occurrence of AMS after acute ascent to 3500 m altitude in Indian army personnel has not been tested yet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.